Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Positive replication and linkage disequilibrium mapping of the chromosome 21q22.1 malaria susceptibility locus

Abstract

Four cytokine receptor genes are located on Chr21q22.11, encoding the α and β subunits of the interferon-α receptor (IFNAR1 and IFNAR2), the β subunit of the interleukin 10 receptor (IL10RB) and the second subunit of the interferon-γ receptor (IFNGR2). We previously reported that two variants in IFNAR1 were associated with susceptibility to malaria in Gambians. We now present an extensive fine-scale mapping of the associated region utilizing 45 additional genetic markers obtained from public databases and by sequencing a 44 kb region in and around the IFNAR1 gene in 24 Gambian children (12 cases/12 controls). Within the IFNAR1 gene, a newly studied C → G single-nucleotide polymorphism (IFNAR1 272354c-g) at position −576 relative to the transcription start was found to be more strongly associated with susceptibility to severe malaria. Association was observed in three populations: in Gambian (P=0.002), Kenyan (P=0.022) and Vietnamese (P=0.005) case–control studies. When all three studies were combined, using the Mantel–Haenszel test, the presence of IFNAR1 −576G was associated with a substantially elevated risk of severe malaria (N=2444, OR=1.38, 95% CI: 1.17–1.64; P=1.7 × 10−4). This study builds on previous work to further highlight the importance of the type-I interferon pathway in malaria susceptibility and illustrates the utility of typing SNPs within regions of high linkage disequilibrium in multiple populations to confirm initial positive associations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI . The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434: 214–217.

    Article  CAS  Google Scholar 

  2. Allison AC . Polymorphism and natural selection in human populations. Cold Spring Harb Symp Quant Biol 1964; 29: 137–149.

    Article  CAS  Google Scholar 

  3. Ruwende C, Khoo SC, Snow RW, Yates SN, Kwiatkowski D, Gupta S et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 1995; 376: 246–249.

    Article  CAS  Google Scholar 

  4. Flint J, Hill AV, Bowden DK, Oppenheimer SJ, Sill PR, Serjeantson SW et al. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 1986; 321: 744–750.

    Article  CAS  Google Scholar 

  5. Hutagalung R, Wilairatana P, Looareesuwan S, Brittenham GM, Aikawa M, Gordeuk VR . Influence of hemoglobin E trait on the severity of Falciparum malaria. J Infect Dis 1999; 179: 283–286.

    Article  CAS  Google Scholar 

  6. Hutagalung R, Wilairatana P, Looareesuwan S, Brittenham GM, Gordeuk VR . Influence of hemoglobin E trait on the antimalarial effect of artemisinin derivatives. J Infect Dis 2000; 181: 1513–1516.

    Article  CAS  Google Scholar 

  7. Frodsham AJ, Hill AV . Genetics of infectious diseases. Hum Mol Genet 2004; 13 (Spec No 2): R187–R194.

    Article  CAS  Google Scholar 

  8. Knight JC, Udalova I, Hill AV, Greenwood BM, Peshu N, Marsh K et al. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet 1999; 22: 145–150.

    Article  CAS  Google Scholar 

  9. McGuire W, Knight JC, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D . Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis 1999; 179: 287–290.

    Article  CAS  Google Scholar 

  10. Koch O, Awomoyi A, Usen S, Jallow M, Richardson A, Hull J et al. IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. J Infect Dis 2002; 185: 1684–1687.

    Article  CAS  Google Scholar 

  11. Volkman SK, Sabeti PC, DeCaprio D, Neafsey DE, Schaffner SF, Milner Jr DA et al. A genome-wide map of diversity in Plasmodium falciparum. Nat Genet 2007; 39: 113–119.

    Article  CAS  Google Scholar 

  12. Jeffares DC, Pain A, Berry A, Cox AV, Stalker J, Ingle CE et al. Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nat Genet 2007; 39: 120–125.

    Article  CAS  Google Scholar 

  13. Mu J, Awadalla P, Duan J, McGee KM, Keebler J, Seydel K et al. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat Genet 2007; 39: 126–130.

    Article  CAS  Google Scholar 

  14. Hugosson E, Montgomery SM, Premhi Z, Troye-Blomberg M, Bjorkman A . Higher IL-10 levels are associated with less effective clearance of Plasmodium falciparum parasites. Parasite Immunol 2004; 26: 111–117.

    Article  CAS  Google Scholar 

  15. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 2004; 72: 5630–5637.

    Article  CAS  Google Scholar 

  16. Vigario AM, Belnoue E, Cumano A, Marussig M, Miltgen F, Landau I et al. Inhibition of Plasmodium yoelii blood-stage malaria by interferon alpha through the inhibition of the production of its target cell, the reticulocyte. Blood 2001; 97: 3966–3971.

    Article  CAS  Google Scholar 

  17. Cousens LP, Peterson R, Hsu S, Dorner A, Altman JD, Ahmed R et al. Two roads diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. J Exp Med 1999; 189: 1315–1328.

    Article  CAS  Google Scholar 

  18. Takaoka A, Mitani Y, Suemori H, Sato M, Yokochi T, Noguchi S et al. Cross talk between interferon-gamma and -alpha/beta signaling components in caveolar membrane domains. Science 2000; 288: 2357–2360.

    Article  CAS  Google Scholar 

  19. Hunt NH, Grau GE . Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 2003; 24: 491–499.

    Article  CAS  Google Scholar 

  20. John CC, Moormann AM, Sumba PO, Ofulla AV, Pregibon DC, Kazura JW . Gamma interferon responses to Plasmodium falciparum liver-stage antigen 1 and thrombospondin-related adhesive protein and their relationship to age, transmission intensity, and protection against malaria. Infect Immun 2004; 72: 5135–5142.

    Article  CAS  Google Scholar 

  21. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434: 772–777.

    Article  CAS  Google Scholar 

  22. Pichyangkul S, Yongvanitchit K, Kum-arb U, Hemmi H, Akira S, Krieg AM et al. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J Immunol 2004; 172: 4926–4933.

    Article  CAS  Google Scholar 

  23. Aucan C, Walley AJ, Hennig BJ, Fitness J, Frodsham A, Zhang L et al. Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in the Gambia. Genes Immun 2003; 4: 275–282.

    Article  CAS  Google Scholar 

  24. Frodsham AJ, Zhang L, Dumpis U, Azizah N, Best S, Durham A et al. A Class II cytokine Receptor Gene Cluster is a major locus for Hepatitis B persistence. Proc Natl Acad Sci USA 2006; 103: 9148–9153.

    Article  CAS  Google Scholar 

  25. Doolan DL, Sedegah M, Hedstrom RC, Hobart P, Charoenvit Y, Hoffman SL . Circumventing genetic restriction of protection against malaria with multigene DNA immunization: CD8+ cell-, interferon gamma-, and nitric oxide-dependent immunity. J Exp Med 1996; 183: 1739–1746.

    Article  CAS  Google Scholar 

  26. Luty AJ, Lell B, Schmidt-Ott R, Lehman LG, Luckner D, Greve B et al. Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J Infect Dis 1999; 179: 980–988.

    Article  CAS  Google Scholar 

  27. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991; 352: 595–600.

    Article  CAS  Google Scholar 

  28. Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V et al. Indicators of life-threatening malaria in African children. N Engl J Med 1995; 332: 1399–1404.

    Article  CAS  Google Scholar 

  29. Ewing B, Hillier L, Wendl MC, Green P . Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8: 175–185.

    Article  CAS  Google Scholar 

  30. Ewing B, Green P . Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8: 186–194.

    Article  CAS  Google Scholar 

  31. Gordon D, Abajian C, Green P . Consed: a graphical tool for sequence finishing. Genome Res 1998; 8: 195–202.

    Article  CAS  Google Scholar 

  32. Jurinke C, van den Boom D, Cantor CR, Koster H . The use of MassARRAY technology for high throughput genotyping. Adv Biochem Eng Biotechnol 2002; 77: 57–74.

    CAS  PubMed  Google Scholar 

  33. Stephens M, Smith NJ, Donnelly P . new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  Google Scholar 

  34. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients from the Gambian, Kenyan and Vietnamese malaria study populations, as well as the many investigators involved in the original case-control studies in these populations for their contributions. We acknowledge Angela Frodsham and Branwen Hennig for information on IFNAR2 F8S and IL10RB markers +1165 and +1797. This work was funded by the Wellcome Trust, UK and the Agency for Science, Technology and Research (A-STAR), Singapore. CCK is a scholar of A-STAR and is a member of the MBBS–PhD programme, Faculty of Medicine, National University of Singapore. AS, JAB, KM, NP, KM and TNW are supported by the Wellcome Trust and the Kenya Medical Research Institute. AVSH is a Wellcome Trust Principal Research Fellow. This study was published with permission from the Director of KEMRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C C Khor.

Additional information

Competing interests

The authors declare no competing financial interests.

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khor, C., Vannberg, F., Chapman, S. et al. Positive replication and linkage disequilibrium mapping of the chromosome 21q22.1 malaria susceptibility locus. Genes Immun 8, 570–576 (2007). https://doi.org/10.1038/sj.gene.6364417

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364417

Keywords

This article is cited by

Search

Quick links