Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myosin VI is an actin-based motor that moves backwards

Abstract

Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules1, all characterized myosin motors move towards the barbed (+) end of actin filaments2. Crystal structures of myosin II (refs 3,4,5,6) have shown that small movements within the myosin motor core are transmitted through the ‘converter domain’ to a ‘lever arm’ consisting of a light-chain-binding helix and associated light chains5,6. The lever arm further amplifies the motions of the converter domain into large directed movements3,5,6,7. Here we report that myosin VI, an unconventional myosin8,9,10,11,12, moves towards the pointed (-) end of actin. We visualized the myosin VI construct bound to actin using cryo-electron microscopy and image analysis, and found that an ADP-mediated conformational change in the domain distal to the motor, a structure likely to be the effective lever arm, is in the opposite direction to that observed for other myosins. Thus, it appears that myosin VI achieves reverse-direction movement by rotating its lever arm in the opposite direction to conventional myosin lever arm movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myosin VI.
Figure 2: Determination of direction of myosin movement.
Figure 3: Comparison of ADP (left) and rigor (right) 3D maps of myosin VI ( a, b), and smooth muscle myosin II (c, d) attached to F-actin.

Similar content being viewed by others

References

  1. Bloom,G. S. & Endow,S. A. Motor proteins 1: kinesins. Protein Profile 2, 1105–1171 (1995).

    CAS  PubMed  Google Scholar 

  2. Sellers,J. R. & Goodson,H. V. Motor proteins 2: myosin. Protein Profile 2, 1323–1423 (1995).

    CAS  PubMed  Google Scholar 

  3. Rayment,I. et al. Three-dimensional structure of myosin subfragment-1: A molecular motor. Science 261, 50– 58 (1993).

    Article  CAS  ADS  Google Scholar 

  4. Fisher,A. J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF-4. Biochem. 34, 8960– 8972 (1995).

    Article  CAS  Google Scholar 

  5. Dominguez,R., Freyzon,Y., Trybus,K. M. & Cohen,C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 ( 1998).

    Article  CAS  Google Scholar 

  6. Houdusse,A., Kalabokis,V. N., Himmel,D., Szent-Gyorgyi,A. G. & Cohen,C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999).

    Article  CAS  Google Scholar 

  7. Whittaker,M. et al. A 35 Å movement of smooth muscle myosin on ADP release. Nature 378, 748– 751 (1995).

    Article  CAS  ADS  Google Scholar 

  8. Mooseker,M. S. & Cheney,R. E. Unconventional myosins. Annu. Rev. Cell Dev. Biol. 11, 633– 675 (1995).

    Article  CAS  Google Scholar 

  9. Kellerman,K. A. & Miller,K. G. An unconventional myosin heavy chain gene from Drosophila melanogaster. J. Cell Biol. 119, 823–834 (1992).

    Article  CAS  Google Scholar 

  10. Hasson,T. & Mooseker,M. S. Porcine myosin VI: characterization of a new mammalian unconventional myosin. J. Cell Biol. 127, 425–440 (1994).

    Article  CAS  Google Scholar 

  11. Avraham,K. B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nature Genet. 11, 369–375 (1995).

    Article  CAS  Google Scholar 

  12. Avraham,K. B. et al. Characterization of human unconventional myosin-VI, a gene responsible for deafness in Snell's waltzer mice. Hum. Mol. Genet. 6, 1225–1231 ( 1997).

    Article  CAS  Google Scholar 

  13. Hasson,T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307 (1997).

    Article  CAS  Google Scholar 

  14. Buss,F. et al. The localization of myosin VI at the Golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J. Cell Biol. 143, 1535–1545 ( 1998).

    Article  CAS  Google Scholar 

  15. Mermall,V., McNally,J. G. & Miller, K. G. Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature 369, 560–562 ( 1994).

    Article  CAS  ADS  Google Scholar 

  16. Kron,S. J. & Spudich,J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl Acad. Sci. USA 83, 6272–6276 (1986).

    Article  CAS  ADS  Google Scholar 

  17. Wolenski,J. S., Cheney,R. E., Mooseker,M. S. & Forscher,P. In vitro motility of immunoadsorbed brain myosin-V using a Limulus acrosomal process and optical tweezer-based assay. J. Cell Sci. 108, 1489–1496 ( 1995).

    CAS  Google Scholar 

  18. Jontes,J. D., Wilson-Kubalek,E. M. & Milligan, R. A. A 32 degree tail swing in brush border myosin I on ADP release. Nature 378, 751– 753 (1995).

    Article  CAS  ADS  Google Scholar 

  19. Henningsen,U. & Schliwa,M. Reversal in the direction of movement of a molecular motor. Nature 389, 93– 96 (1997).

    Article  CAS  ADS  Google Scholar 

  20. Sablin,E. P. et al. Direction determination in the minus-end-directed kinesin motor ncd. Nature 395, 813– 816 (1998).

    Article  CAS  ADS  Google Scholar 

  21. Endow,S. A. & Waligora,K. W. Determinants of kinesin motor polarity. Science 281, 1200– 1202 (1998).

    Article  CAS  ADS  Google Scholar 

  22. Hirose,K., Cross,R. A. & Amos,L. A. Nucleotide-dependent structural changes in dimeric NCD molecules complexed to microtubules. J. Mol. Biol. 278, 389–400 (1998).

    Article  CAS  Google Scholar 

  23. Sosa,H. et al. A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224 (1997).

    Article  CAS  Google Scholar 

  24. Sweeney,H. L. et al. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J. Biol. Chem. 273, 6262–6270 (1998).

    Article  CAS  Google Scholar 

  25. Hopp,T. P. et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Biotechnology 6, 1205–1210 (1988).

    Google Scholar 

  26. Kolodziej,P. A. & Young,R. A. Epitope tagging and protein surveillance. Methods Enzymol. 194, 508–519 (1991).

    Article  CAS  Google Scholar 

  27. Espreafico,E. M. et al. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 119, 1541–1557 (1992).

    Article  CAS  Google Scholar 

  28. Pollard,T. D. Assays for myosin. Methods Enzymol. 85, 123–130 (1982).

    Article  CAS  Google Scholar 

  29. Elzinga,M. & Phelan,J. J. F-actin is intermolecularly crosslinked by N,N′-p-phenylenedimaleimide through lysine-191 and cysteine-374. Proc. Natl Acad. Sci. USA 81, 6599– 6602 (1984).

    Article  CAS  ADS  Google Scholar 

  30. Jontes,J. D. & Milligan,R. A. Brush border myosin-I structure and ADP-dependent conformational changes revealed by cryoelectron microscopy and image analysis. J. Cell Biol. 139, 683 –693 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH. We thank M. S. Mooseker for the chicken myosin V cDNA, and G. Daniels of Leica Microsystems for technical support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, A., Lin, A., Chen, LQ. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999). https://doi.org/10.1038/46835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46835

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing