Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diffusion mechanisms in metallic supercooled liquids and glasses

Abstract

The mechanisms of atomic transport in supercooled liquids and the nature of the glass transition are long-standing problems1,2,3,4. Collective atomic motion is thought to play an important role4,5,6 in both phenomena. A metallic supercooled liquid represents an ideal system for studying intrinsic collective motions because of its structural similarity to the “dense random packing of spheres” model7, which is conceptually simple. Unlike polymeric and network glasses, metallic supercooled liquids have only recently become experimentally accessible, following the discovery of bulk metallic glasses8,9,10,11,12. Here we report a 9Be nuclear magnetic resonance study of Zr-based bulk metallic glasses8,9 in which we investigate microscopic transport in supercooled liquids around the glass transition regime. Combining our results with diffusion measurements, we demonstrate that two distinct processes contribute to long-range transport in the supercooled liquid state: single-atom hopping and collective motion, the latter being the dominant process. The effect of the glass transition is clearly visible in the observed diffusion behaviour of the Be atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elastic back-scattering of 6.5 MeV 4He2+ ions and SAE measurements in bulk metallic glasses.
Figure 2: A two-dimensional illustration of randomly and densely packed spheres.

Similar content being viewed by others

References

  1. Ediger,M. D., Angell,C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  CAS  Google Scholar 

  2. Grest,G. S. & Cohen,M. H. Liquids, glasses, and the glass transition: a free-volume approach. Adv. Chem. Phys. 48, 454–525 (1981).

    Google Scholar 

  3. Götze,W. & Sjögren,L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    Article  ADS  Google Scholar 

  4. Faupel,F. Diffusion in non-crystalline metallic and organic media. Phys. Status. Solidi. A 134, 9–59 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Stillinger, F. H. Relaxation and flow mechanisms in “fragile” glass-forming liquids. J. Chem. Phys. 89, 6461–6469 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  6. Kivelson,S. A., Zhao,X., Kivelson,D., Fischer,T. M. & Knobler, C. M. Frustration-limited clusters in liquids. J. Chem. Phys. 101, 2391–2397 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Bernal,J. D. Geometry of the structure of monatomic liquids. Nature 185, 68–70 (1960).

    Article  ADS  Google Scholar 

  8. Peker,A. & Johnson, W. L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342–2344 (1993).

    Article  ADS  Google Scholar 

  9. Bakke,E., Busch,R. & Johnson, W. L. The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid. Appl. Phys. Lett. 67, 3260–3262 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Busch,R. & Johnson, W. L. The kinetic glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass former-supercooled liquids on a long time scale. Appl. Phys. Lett. 72, 2695–2697 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Inoue,A., Zhang, T & Takeuchi,A. Ferrous and nonferrous bulk amorphous alloys. Mater. Sci. Forum 269–272, 855–864 (1998).

    Article  Google Scholar 

  12. Greer,A. L. Metallic glasses. Science 267, 1947–1953 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Geyer, U. et al. Atomic diffusion in the supercooled liquid and glassy states of the alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5. Phys. Rev. Lett. 75, 2364–2367 (1995).

    Article  ADS  Google Scholar 

  14. Geyer,U. et al. Small atom diffusion and breakdown of the Stokes–Einstein relation in the supercooled liquid state of the Zr46. 75Ti8. 25Cu7. 5Ni10Be27. 5 alloy. Appl. Phys. Lett. 69, 2492–2494 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Knorr,K., Macht, M. -P., Freitag,K. & Mehrer, H. Self-diffusion in the amorphous and supercooled liquid state of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5. J. Non-Cryst. Solids 250–252, 669–673 (1999).

    Article  Google Scholar 

  16. Fielitz,P., Macht, M. -P., Naundorf,V. & Frohberg,G. Diffusion in ZrTiCuNiBe bulk glasses at temperatures around the glass transition. J. Non-Cryst. Solids 250–252, 674–678 (1999).

    Article  Google Scholar 

  17. Ehmler,H., Heesemann,A., Rätzke,K., Faupel,F. & Geyer,U. Mass dependence of diffusion in a supercooled metallic melt. Phys. Rev. Lett. 80, 4919–4922 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Tang, X. -P. & Wu,Y. Alignment echo of spin-3/2 9Be nuclei: detection of ultraslow motion. J. Magn. Reson. 133, 155–165 (1998).

    Article  ADS  Google Scholar 

  19. Tang, X. -P., Busch,R., Johnson,W. L. & Wu,Y. Slow atomic motion in Zr-Ti-Cu-Ni-Be metallic glasses studied by NMR. Phys. Rev. Lett. 81, 5358–5361 (1998).

    Article  ADS  Google Scholar 

  20. Spiess,H. W. Deuteron spin alignment: a probe for studying ultraslow motions in solids and solid polymers. J. Chem. Phys. 72, 6755–6762 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Fuara,F., Wefing,S. & Kuhs, W. E. Direct observation of tetrahedral hydrogen jumps in ice Ih. J. Chem. Phys. 88, 6801–6809 (1988).

    Article  ADS  Google Scholar 

  22. Ehlich,D. & Silescu,H. Tracer diffusion at the glass-transition. Macromolecules 23, 1600–1610 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Army Research Office, the US National Science Foundation, and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, XP., Geyer, U., Busch, R. et al. Diffusion mechanisms in metallic supercooled liquids and glasses. Nature 402, 160–162 (1999). https://doi.org/10.1038/45996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45996

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing