Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immunology and immunotherapy approaches for prostate cancer

Abstract

Several mechanisms that impair the immune response to promote tumour progression are reported. These mechanisms aim to reduce the ability of antigen-presenting cells to present antigen and activate naïve T cells to support an active immune response or to create a suppressive environment that induce non-functional tumour-associated antigen-specific T cells. Prostate cancer (PC) alone accounts for 33% of incident cancer cases and about 9% of all cancer-related deaths among men in the USA during 2006. Whereas androgen deprivation has remained the first line of therapy for advanced PC, other therapies are still required due to progression to an androgen-resistant state and eventually loss of control in patients receiving hormonal therapy. Immunotherapy seems to be a promising approach to enhance tumour-specific T-cell responses in different cancers including prostate. More importantly, clinical trials in advanced PC patients have shown that immunotherapy may generate significant clinical responses. Immunology and immunotherapy aspects of PC with focus on prostate-specific antigen will be presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chamberlain RS, Kaufman H . Innovations and strategies for the development of anticancer vaccines. Expert Opin Pharmacother 2000; 1: 603–614.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485–1492.

    Article  CAS  PubMed  Google Scholar 

  3. Blattman JN, Greenberg PD . Cancer immunotherapy: a treatment for the masses. Science 2004; 305: 200–205.

    Article  CAS  PubMed  Google Scholar 

  4. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001; 410: 1107–1111.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg SA . Shedding light on immunotherapy for cancer. N Engl J Med 2004; 350: 1461–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Inaba K, Young JW, Steinman RM . Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987; 166: 182–194.

    Article  CAS  PubMed  Google Scholar 

  7. McCoy KD, Hermans IF, Fraser JH, Le Gros G, Ronchese F . Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cell-induced activation and cytotoxicity of CD8(+) T cells independently of CD4(+) T cell help. J Exp Med 1999; 189: 1157–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Young JW, Steinman RM . Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells. J Exp Med 1990; 171: 1315–1332.

    Article  CAS  PubMed  Google Scholar 

  9. Macatonia SE, Taylor PM, Knight SC, Askonas BA . Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro. J Exp Med 1989; 169: 1255–1264.

    Article  CAS  PubMed  Google Scholar 

  10. Mehta-Damani A, Markowicz S, Engleman EG . Generation of antigen-specific CD8+ CTLs from naive precursors. J Immunol 1994; 153: 996–1003.

    CAS  PubMed  Google Scholar 

  11. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000a; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  12. Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR . Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 1997; 186: 65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR . Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393: 478–480.

    Article  CAS  PubMed  Google Scholar 

  14. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 1998; 393: 480–483.

    Article  CAS  PubMed  Google Scholar 

  15. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393: 474–478.

    Article  CAS  PubMed  Google Scholar 

  16. Jefford M, Maraskovsky E, Cebon J, Davis ID . The use of dendritic cells in cancer therapy. Lancet Oncol 2001; 2: 343–353.

    Article  CAS  PubMed  Google Scholar 

  17. Alegre ML, Frauwirth KA, Thompson CB . T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 2001; 1: 220–228.

    Article  CAS  PubMed  Google Scholar 

  18. Freeman GJ, Boussiotis VA, Anumanthan A, Bernstein GM, Ke XY, Rennert PD et al. B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity 1995; 2: 523–532.

    Article  CAS  PubMed  Google Scholar 

  19. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995; 80: 707–718.

    Article  CAS  PubMed  Google Scholar 

  20. Burnet FM . The concept of immunological surveillance. Prog Exp Tumor Res 1970; 13: 1–27.

    Article  CAS  PubMed  Google Scholar 

  21. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3: 991–998.

    Article  CAS  PubMed  Google Scholar 

  22. Stutman O . Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J Natl Cancer Inst 1979; 62: 353–358.

    CAS  PubMed  Google Scholar 

  23. Ikehara S, Pahwa RN, Fernandes G, Hansen CT, Good RA . Functional T cells in athymic nude mice. Proc Natl Acad Sci USA 1984; 81: 886–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maleckar JR, Sherman LA . The composition of the T cell receptor repertoire in nude mice. J Immunol 1987; 138: 3873–3876.

    CAS  PubMed  Google Scholar 

  25. McClain KL . Immunodeficiency states and related malignancies. Cancer Treat Res 1997; 92: 39–61.

    Article  CAS  PubMed  Google Scholar 

  26. Dunn GP, Old LJ, Schreiber RD . The three Es of cancer immunoediting. Annu Rev Immunol 2004b; 22: 329–360.

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 1998; 95: 7556–7561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Street SE, Trapani JA, MacGregor D, Smyth MJ . Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 2002; 196: 129–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003; 348: 203–213.

    Article  CAS  PubMed  Google Scholar 

  30. Dunn GP, Old LJ, Schreiber RD . The three Es of cancer immunoediting. Annu Rev Immunol 2004b; 22: 329–360.

    Article  CAS  PubMed  Google Scholar 

  31. Greenberg PD . Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol 1991; 49: 281–355.

    Article  CAS  PubMed  Google Scholar 

  32. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den EB et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 1643–1647.

    Article  CAS  PubMed  Google Scholar 

  33. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 1994; 91: 6458–6462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. chultze JL, Vonderheide RH . From cancer genomics to cancer immunotherapy: toward second-generation tumor antigens. Trends Immunol 2001; 22: 516–523.

    Article  Google Scholar 

  35. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993; 178: 489–495.

    Article  CAS  PubMed  Google Scholar 

  36. De Plaen E, Lurquin C, Lethe B, van der BP, Brichard V, Renauld JC et al. Identification of genes coding for tumor antigens recognized by cytolytic T lymphocytes. Methods 1997; 12: 125–142.

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg SA . A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 1999a; 10: 281–287.

    Article  CAS  PubMed  Google Scholar 

  38. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 1994; 264: 716–719.

    Article  CAS  PubMed  Google Scholar 

  39. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 1992; 255: 1261–1263.

    Article  CAS  PubMed  Google Scholar 

  40. Fisk B, Blevins TL, Wharton JT, Ioannides CG . Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 1995; 181: 2109–2117.

    Article  CAS  PubMed  Google Scholar 

  41. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E et al. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 1998; 59: 1–14.

    Article  CAS  PubMed  Google Scholar 

  42. Tureci O, Sahin U, Pfreundschuh M . Serological analysis of human tumor antigens: molecular definition and implications. Mol Med Today 1997; 3: 342–349.

    Article  CAS  PubMed  Google Scholar 

  43. Renkvist N, Castelli C, Robbins PF, Parmiani G . A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 2001; 50: 3–15.

    Article  CAS  PubMed  Google Scholar 

  44. Anichini A, Maccalli C, Mortarini R, Salvi S, Mazzocchi A, Squarcina P et al. Melanoma cells and normal melanocytes share antigens recognized by HLA-A2-restricted cytotoxic T cell clones from melanoma patients. J Exp Med 1993; 177: 989–998.

    Article  CAS  PubMed  Google Scholar 

  45. Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E . Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 1999; 59: 431–435.

    CAS  PubMed  Google Scholar 

  46. Robbins PF, El Gamil M, Li YF, Kawakami Y, Loftus D, Appella E et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996; 183: 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  47. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  48. Topalian SL, Rivoltini L, Mancini M, Markus NR, Robbins PF, Kawakami Y et al. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci USA 1994; 91: 9461–9465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosenberg SA . Progress in human tumour immunology and immunotherapy. Nature 2001; 411: 380–384.

    Article  CAS  PubMed  Google Scholar 

  50. Boon T, Van den Eynde B . Tumour immunology. Curr Opin Immunol 2003; 15: 129–130.

    Article  CAS  PubMed  Google Scholar 

  51. Jager E, Ringhoffer M, Altmannsberger M, Arand M, Karbach J, Jager D et al. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 1997; 71: 142–147.

    Article  CAS  PubMed  Google Scholar 

  52. Schuler-Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, Jonuleit H et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol 2000; 165: 3492–3496.

    Article  CAS  PubMed  Google Scholar 

  53. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001c; 98: 8809–8814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 1999; 80: 219–230.

    Article  CAS  PubMed  Google Scholar 

  55. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  56. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190: 1669–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenberg SA . A new era of cancer immunotherapy: converting theory to performance. CA Cancer J Clin 1999b; 49: 70–73, 65.

    Article  CAS  PubMed  Google Scholar 

  59. Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H et al. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA 1999; 96: 2233–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Janeway CA, Travers P, Walport M, Shlomchik M . Manipulation of the immune response. In: Bushell G (ed) Immunobiology: The Immune System in Health and Disease. Garland Publishing: London, 2001, pp 553–596.

    Google Scholar 

  61. Sanda MG, Restifo NP, Walsh JC, Kawakami Y, Nelson WG, Pardoll DM et al. Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 1995; 87: 280–285.

    Article  CAS  PubMed  Google Scholar 

  62. Soong TW, Hui KM . Regulation of the expression of major histocompatibility complex class I genes in human colorectal cancer. Cancer Detect Prev 1991; 15: 231–239.

    CAS  PubMed  Google Scholar 

  63. Zheng P, Sarma S, Guo Y, Liu Y . Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res 1999; 59: 3461–3467.

    CAS  PubMed  Google Scholar 

  64. Chen L, Linsley PS, Hellstrom KE . Costimulation of T cells for tumor immunity. Immunol Today 1993; 14: 483–486.

    Article  CAS  PubMed  Google Scholar 

  65. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998; 92: 4150–4166.

    Article  CAS  PubMed  Google Scholar 

  66. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 1998; 160: 1224–1232.

    CAS  PubMed  Google Scholar 

  67. Chaux P, Favre N, Martin M, Martin F . Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int J Cancer 1997; 72: 619–624.

    Article  CAS  PubMed  Google Scholar 

  68. Gabrilovich DI, Ciernik IF, Carbone DP . Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 1996; 170: 101–110.

    Article  CAS  PubMed  Google Scholar 

  69. Enk AH, Jonuleit H, Saloga J, Knop J . Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 1997; 73: 309–316.

    Article  CAS  PubMed  Google Scholar 

  70. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP . Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 1997; 3: 483–490.

    CAS  PubMed  Google Scholar 

  71. Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN . Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 1998; 4: 585–593.

    CAS  PubMed  Google Scholar 

  72. Fortis C, Foppoli M, Gianotti L, Galli L, Citterio G, Consogno G et al. Increased interleukin-10 serum levels in patients with solid tumours. Cancer Lett 1996; 104: 1–5.

    Article  CAS  PubMed  Google Scholar 

  73. Beck C, Schreiber H, Rowley D . Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 2001; 52: 387–395.

    Article  CAS  PubMed  Google Scholar 

  74. Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 2003; 111: 727–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nat Med 1996; 2: 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  76. Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa Y et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 2004; 20: 107–118.

    Article  CAS  PubMed  Google Scholar 

  77. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 200; 177: 7398–7405.

    Article  Google Scholar 

  78. Clay TM, Hobeika AC, Mosca PJ, Lyerly HK, Morse MA . Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res 2001; 7: 1127–1135.

    CAS  PubMed  Google Scholar 

  79. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274: 94–96.

    Article  CAS  PubMed  Google Scholar 

  80. Gratama JW, van Esser JW, Lamers CH, Tournay C, Lowenberg B, Bolhuis RL et al. Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 2001; 98: 1358–1364.

    Article  CAS  PubMed  Google Scholar 

  81. Keenan RD, Ainsworth J, Khan N, Bruton R, Cobbold M, Assenmacher M et al. Purification of cytomegalovirus-specific CD8 T cells from peripheral blood using HLA-peptide tetramers. Br J Haematol 2001; 115: 428–434.

    Article  CAS  PubMed  Google Scholar 

  82. Dunbar PR, Ogg GS, Chen J, Rust N, van der BP, Cerundolo V . Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Curr Biol 1998; 8: 413–416.

    Article  CAS  PubMed  Google Scholar 

  83. Lee KH, Wang E, Nielsen MB, Wunderlich J, Migueles S, Connors M et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999; 163: 6292–6300.

    CAS  PubMed  Google Scholar 

  84. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F et al. High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 1999; 190: 705–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Romero P, Dunbar PR, Valmori D, Pittet M, Ogg GS, Rimoldi D et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 1998; 188: 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Givan AL, Fisher JL, Waugh M, Ernstoff MS, Wallace PK . A flow cytometric method to estimate the precursor frequencies of cells proliferating in response to specific antigens. J Immunol Methods 1999; 230: 99–112.

    Article  CAS  PubMed  Google Scholar 

  87. Hatam L, Schuval S, Bonagura VR . Flow cytometric analysis of natural killer cell function as a clinical assay. Cytometry 1994; 16: 59–68.

    Article  CAS  PubMed  Google Scholar 

  88. Wilkinson RW, Lee-MacAry AE, Davies D, Snary D, Ross EL . Antibody-dependent cell-mediated cytotoxicity: a flow cytometry-based assay using fluorophores. J Immunol Methods 2001; 258: 183–191.

    Article  CAS  PubMed  Google Scholar 

  89. Elkord E, Williams PE, Kynaston H, Rowbottom AW . Differential CTLs specific for prostate-specific antigen in healthy donors and patients with prostate cancer. Int Immunol 2005; 17: 1315–1325.

    Article  CAS  PubMed  Google Scholar 

  90. Carson RT, Vignali DA . Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J Immunol Methods 1999; 227: 41–52.

    Article  CAS  PubMed  Google Scholar 

  91. Czerkinsky C, Andersson G, Ekre HP, Nilsson LA, Klareskog L, Ouchterlony O . Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J Immunol Methods 1988; 110: 29–36.

    Article  CAS  PubMed  Google Scholar 

  92. Schmittel A, Keilholz U, Scheibenbogen C . Evaluation of the interferon-gamma ELISPOT-assay for quantification of peptide specific T lymphocytes from peripheral blood. J Immunol Methods 1997; 210: 167–174.

    Article  CAS  PubMed  Google Scholar 

  93. Maino VC, Picker LJ . Identification of functional subsets by flow cytometry: intracellular detection of cytokine expression. Cytometry 1998; 34: 207–215.

    Article  CAS  PubMed  Google Scholar 

  94. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–130.

    Article  PubMed  Google Scholar 

  95. Cancer Research UK. Prostate CancerStats 2002. Cancer Research UK: London, 2002.

  96. Jones GW, Mettlin C, Murphy GP, Guinan P, Herr HW, Hussey DH et al. Patterns of care for carcinoma of the prostate gland: results of a national survey of 1984 and 1990. J Am Coll Surg 1995; 180: 545–554.

    CAS  PubMed  Google Scholar 

  97. Selley S, Donovan J, Faulkner A, Coast J, Gillatt D . Diagnosis, management and screening of early localised prostate cancer. Health Technol Assess 1997; 1: i1–i96.

    Article  Google Scholar 

  98. Elo JP, Visakorpi T . Molecular genetics of prostate cancer. Ann Med 2001; 33: 130–141.

    Article  CAS  PubMed  Google Scholar 

  99. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E et al. Cancer statistics, 2004. CA Cancer J Clin 2004; 54: 8–29.

    Article  PubMed  Google Scholar 

  100. Kolonel LN, Nomura AM, Cooney RV . Dietary fat and prostate cancer: current status. J Natl Cancer Inst 1999; 91: 414–428.

    Article  CAS  PubMed  Google Scholar 

  101. Guidelines on the management of prostate cancer. A document for local expert groups in the United Kingdom preparing prostate management policy documents. The Royal College of Radiologists’ Clinical Oncology Information Network. British Association of Urological Surgeons. BJU Int 1999; 84: 987–1014.

  102. Ablin RJ, Soanes WA, Bronson P, Witebsky E . Precipitating antigens of the normal human prostate. J Reprod Fertil 1970; 22: 573–574.

    Article  CAS  PubMed  Google Scholar 

  103. Hara M, Koyanagi Y, Inoue T, Fukuyama T . [Some physico-chemical characteristics of ‘-seminoprotein’, an antigenic component specific for human seminal plasma. Forensic immunological study of body fluids and secretion. VII]. Nippon Hoigaku Zasshi 1971; 25: 322–324.

    CAS  PubMed  Google Scholar 

  104. Wang MC, Valenzuela LA, Murphy GP, Chu TM . Purification of a human prostate specific antigen. Invest Urol 1979; 17: 159–163.

    CAS  PubMed  Google Scholar 

  105. Riegman PH, Vlietstra RJ, Suurmeijer L, Cleutjens CB, Trapman J . Characterization of the human kallikrein locus. Genomics 1992; 14: 6–11.

    Article  CAS  PubMed  Google Scholar 

  106. Yousef GM, Diamandis EP . The expanded human kallikrein gene family: locus characterization and molecular cloning of a new member, KLK-L3 (KLK9). Genomics 2000; 65: 184–194.

    Article  CAS  PubMed  Google Scholar 

  107. Yousef GM, Diamandis EP . The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 2001; 22: 184–204.

    CAS  PubMed  Google Scholar 

  108. Henttu P, Vihko P . cDNA coding for the entire human prostate specific antigen shows high homologies to the human tissue kallikrein genes. Biochem Biophys Res Commun 1989; 160: 903–910.

    Article  CAS  PubMed  Google Scholar 

  109. Henttu P, Vihko P . Prostate-specific antigen and human glandular kallikrein: two kallikreins of the human prostate. Ann Med 1994; 26: 157–164.

    Article  CAS  PubMed  Google Scholar 

  110. Lundwall A, Lilja H . Molecular cloning of human prostate specific antigen cDNA. FEBS Lett 1987; 214: 317–322.

    Article  CAS  PubMed  Google Scholar 

  111. Schaller J, Akiyama K, Tsuda R, Hara M, Marti T, Rickli EE . Isolation, characterization and amino-acid sequence of gamma-seminoprotein, a glycoprotein from human seminal plasma. Eur J Biochem 1987; 170: 111–120.

    Article  CAS  PubMed  Google Scholar 

  112. Wang MC, Papsidero LD, Kuriyama M, Valenzuela LA, Murphy GP, Chu TM . Prostate antigen: a new potential marker for prostatic cancer. Prostate 1981; 2: 89–96.

    Article  CAS  PubMed  Google Scholar 

  113. Kelloff GJ, Coffey DS, Chabner BA, Dicker AP, Guyton KZ, Nisen PD et al. Prostate-specific antigen doubling time as a surrogate marker for evaluation of oncologic drugs to treat prostate cancer. Clin Cancer Res 2004; 10: 3927–3933.

    Article  CAS  PubMed  Google Scholar 

  114. vZhang WM, Leinonen J, Kalkkinen N, Dowell B, Stenman UH . Purification and characterization of different molecular forms of prostate-specific antigen in human seminal fluid. Clin Chem 1995; 41: 1567–1573.

    Article  Google Scholar 

  115. Lilja H, Oldbring J, Rannevik G, Laurell CB . Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J Clin Invest 1987; 80: 281–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Giai M, Yu H, Roagna R, Ponzone R, Katsaros D, Levesque MA et al. Prostate-specific antigen in serum of women with breast cancer. Br J Cancer 1995; 72: 728–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Melegos DN, Diamandis EP . Is prostate-specific antigen present in female serum? Clin Chem 1998; 44: 691–692.

    Article  CAS  PubMed  Google Scholar 

  118. Yu H, Diamandis EP . Measurement of serum prostate specific antigen levels in women and in prostatectomized men with an ultrasensitive immunoassay technique. J Urol 1995; 153: 1004–1008.

    Article  CAS  PubMed  Google Scholar 

  119. Tepper SL, Jagirdar J, Heath D, Geller SA . Homology between the female paraurethral (Skene's) glands and the prostate. Immunohistochemical demonstration. Arch Pathol Lab Med 1984; 108: 423–425.

    CAS  PubMed  Google Scholar 

  120. Zaviacic M, Ablin RJ . The female prostate and prostate-specific antigen. Immunohistochemical localization, implications of this prostate marker in women and reasons for using the term prostate in the human female. Histol Histopathol 2000; 15: 131–142.

    CAS  PubMed  Google Scholar 

  121. Barry MJ . Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N Engl J Med 2001; 344: 1373–1377.

    Article  CAS  PubMed  Google Scholar 

  122. Hamdy FC . Prognostic and predictive factors in prostate cancer. Cancer Treat Rev 2001; 27: 143–151.

    Article  CAS  PubMed  Google Scholar 

  123. Ryan CJ, Small EJ . Advances in prostate cancer. Curr Opin Oncol 2004; 16: 242–246.

    Article  PubMed  Google Scholar 

  124. Babaian RJ, Johnston DA, Naccarato W, Ayala A, Bhadkamkar VA, Fritsche Jr HH . The incidence of prostate cancer in a screening population with a serum prostate specific antigen between 2.5 and 4.0 ng/ml: relation to biopsy strategy. J Urol 2001; 165: 757–760.

    Article  CAS  PubMed  Google Scholar 

  125. Catalona WJ, Smith DS, Ornstein DK . Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/ml and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA 1997; 277: 1452–1455.

    Article  CAS  PubMed  Google Scholar 

  126. Ornstein DK, Pruthi RS . Prostate-specific antigen. Expert Opin Pharmacother 2000; 1: 1399–1411.

    Article  CAS  PubMed  Google Scholar 

  127. Pruthi RS . The dynamics of prostate-specific antigen in benign and malignant diseases of the prostate. BJU Int 2000; 86: 652–658.

    Article  CAS  PubMed  Google Scholar 

  128. Carter HB, Morrell CH, Pearson JD, Brant LJ, Plato CC, Metter EJ et al. Estimation of prostatic growth using serial prostate-specific antigen measurements in men with and without prostate disease. Cancer Res 1992; 52: 3323–3328.

    CAS  PubMed  Google Scholar 

  129. D'Amico AV, Chen MH, Roehl KA, Catalona WJ . Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 2004; 351: 125–135.

    Article  CAS  PubMed  Google Scholar 

  130. Johnston BJ . Clinical effects of Coley's toxin. I. A controlled study. Cancer Chemother Rep 1962; 21: 19–41.

    CAS  PubMed  Google Scholar 

  131. Freiha FS, Bagshaw MA . Carcinoma of the prostate: results of post-irradiation biopsy. Prostate 1984; 5: 19–25.

    Article  CAS  PubMed  Google Scholar 

  132. Moul JW . Prostate specific antigen only progression of prostate cancer. J Urol 2000; 163: 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  133. Schellhammer PF, el Mahdi AM, Higgins EM, Schultheiss TE, Ladaga LE, Babb TJ . Prostate biopsy after definitive treatment by interstitial 125iodine implant or external beam radiation therapy. J Urol 1987; 137: 897–901.

    Article  CAS  PubMed  Google Scholar 

  134. Vesalainen S, Lipponen P, Talja M, Syrjanen K . Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer 1994; 30A: 1797–1803.

    Article  CAS  PubMed  Google Scholar 

  135. van Parijs L, Abbas AK . Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 1998; 280: 243–248.

    Article  CAS  PubMed  Google Scholar 

  136. Oesterling JE . Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol 1991; 145: 907–923.

    Article  CAS  PubMed  Google Scholar 

  137. Papsidero LD, Kuriyama M, Wang MC, Horoszewicz J, Leong SS, Valenzuela L et al. Prostate antigen: a marker for human prostate epithelial cells. J Natl Cancer Inst 1981; 66: 37–42.

    CAS  PubMed  Google Scholar 

  138. Xue BH, Zhang Y, Sosman JA, Peace DJ . Induction of human cytotoxic T lymphocytes specific for prostate-specific antigen. Prostate 1997; 30: 73–78.

    Article  CAS  PubMed  Google Scholar 

  139. Correale P, Walmsley K, Nieroda C, Zaremba S, Zhu M, Schlom J et al. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst 1997; 89: 293–300.

    Article  CAS  PubMed  Google Scholar 

  140. Elkord E, Rowbottom AW, Kynaston H, Williams PE . Correlation between CD8+ T cells specific for prostate-specific antigen and level of disease in patients with prostate cancer. Clin Immunol 2006; 120: 91–98.

    Article  CAS  PubMed  Google Scholar 

  141. Correale P, Walmsley K, Zaremba S, Zhu M, Schlom J, Tsang KY . Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitope peptide. J Immunol 1998; 161: 3186–3194.

    CAS  PubMed  Google Scholar 

  142. Terasawa H, Tsang KY, Gulley J, Arlen P, Schlom J . Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clin Cancer Res 2002; 8: 41–53.

    CAS  PubMed  Google Scholar 

  143. Alexander RB, Brady F, Leffell MS, Tsai V, Celis E . Specific T cell recognition of peptides derived from prostate-specific antigen in patients with prostate cancer. Urology 1998; 51: 150–157.

    Article  CAS  PubMed  Google Scholar 

  144. Chakraborty NG, Stevens RL, Mehrotra S, Laska E, Taxel P, Sporn JR et al. Recognition of PSA-derived peptide antigens by T cells from prostate cancer patients without any prior stimulation. Cancer Immunol Immunother 2003; 52: 497–505.

    Article  CAS  PubMed  Google Scholar 

  145. Sanda MG, Smith DC, Charles LG, Hwang C, Pienta KJ, Schlom J et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 1999; 53: 260–266.

    Article  CAS  PubMed  Google Scholar 

  146. Eder JP, Kantoff PW, Roper K, Xu GX, Bubley GJ, Boyden J et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res 2000; 6: 1632–1638.

    CAS  PubMed  Google Scholar 

  147. Gulley J, Chen AP, Dahut W, Arlen PM, Bastian A, Steinberg SM et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 2002; 53: 109–117.

    Article  CAS  PubMed  Google Scholar 

  148. Meidenbauer N, Harris DT, Spitler LE, Whiteside TL . Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer. Prostate 2000; 43: 88–100.

    Article  CAS  PubMed  Google Scholar 

  149. Israeli RS, Powell CT, Fair WR, Heston WD . Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 1993; 53: 227–230.

    CAS  PubMed  Google Scholar 

  150. Lu J, Celis E . Recognition of prostate tumor cells by cytotoxic T lymphocytes specific for prostate-specific membrane antigen. Cancer Res 2002; 62: 5807–5812.

    CAS  PubMed  Google Scholar 

  151. Tjoa B, Boynton A, Kenny G, Ragde H, Misrock SL, Murphy G . Presentation of prostate tumor antigens by dendritic cells stimulates T-cell proliferation and cytotoxicity. Prostate 1996; 28: 65–69.

    Article  CAS  PubMed  Google Scholar 

  152. Vihko P, Virkkunen P, Henttu P, Roiko K, Solin T, Huhtala ML . Molecular cloning and sequence analysis of cDNA encoding human prostatic acid phosphatase. FEBS Lett 1988; 236: 275–281.

    Article  CAS  PubMed  Google Scholar 

  153. Harada M, Matsueda S, Yao A, Ogata R, Noguchi M, Itoh K . Prostate-related antigen-derived new peptides having the capacity of inducing prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients. Oncol Rep 2004; 12: 601–607.

    CAS  PubMed  Google Scholar 

  154. Peshwa MV, Shi JD, Ruegg C, Laus R, van Schooten WC . Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate 1998; 36: 129–138.

    Article  CAS  PubMed  Google Scholar 

  155. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA 1998; 95: 1735–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dannull J, Diener PA, Prikler L, Furstenberger G, Cerny T, Schmid U et al. Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Res 2000; 60: 5522–5528.

    CAS  PubMed  Google Scholar 

  157. Kiessling A, Schmitz M, Stevanovic S, Weigle B, Holig K, Fussel M et al. Prostate stem cell antigen: identification of immunogenic peptides and assessment of reactive CD8+ T cells in prostate cancer patients. Int J Cancer 2002; 102: 390–397.

    Article  CAS  PubMed  Google Scholar 

  158. Tjoa BA, Murphy GP . Development of dendritic-cell based prostate cancer vaccine. Immunol Lett 2000; 74: 87–93.

    Article  CAS  PubMed  Google Scholar 

  159. Curiel TJ, Curiel DT . Tumor immunotherapy: inching toward the finish line. J Clin Invest 2002; 109: 311–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A . Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 1996; 29: 371–380.

    Article  CAS  PubMed  Google Scholar 

  161. Murphy GP, Tjoa BA, Simmons SJ, Ragde H, Rogers M, Elgamal A et al. Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate 1999; 39: 54–59.

    Article  CAS  PubMed  Google Scholar 

  162. Tjoa BA, Erickson SJ, Bowes VA, Ragde H, Kenny GM, Cobb OE et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate 1997; 32: 272–278.

    Article  CAS  PubMed  Google Scholar 

  163. Tjoa BA, Simmons SJ, Bowes VA, Ragde H, Rogers M, Elgamal A et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate 1998; 36: 39–44.

    Article  CAS  PubMed  Google Scholar 

  164. Tjoa BA, Simmons SJ, Elgamal A, Rogers M, Ragde H, Kenny GM et al. Follow-up evaluation of a phase II prostate cancer vaccine trial. Prostate 1999; 40: 125–129.

    Article  CAS  PubMed  Google Scholar 

  165. Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol 2000; 38: 208–217.

    Article  CAS  PubMed  Google Scholar 

  166. Heiser A, Maurice MA, Yancey DR, Wu NZ, Dahm P, Pruitt SK et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol 2001; 166: 2953–2960.

    Article  CAS  PubMed  Google Scholar 

  167. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109: 409–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wolchok JD, Gregor PD, Nordquist LT, Slovin SF, Scher HI . DNA vaccines: an active immunization strategy for prostate cancer. Semin Oncol 2003; 30: 659–666.

    Article  CAS  PubMed  Google Scholar 

  169. Perambakam S, Hallmeyer S, Reddy S, Mahmud N, Bressler L, DeChristopher P et al. Induction of specific T cell immunity in patients with prostate cancer by vaccination with PSA146-154 peptide. Cancer Immunol Immunother 2006; 55: 1033–1042.

    Article  CAS  PubMed  Google Scholar 

  170. Thomas-Kaskel AK, Zeiser R, Jochim R, Robbel C, Schultze-Seemann W, Waller CF et al. Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival. Int J Cancer 2006; 119: 2428–2434.

    Article  CAS  PubMed  Google Scholar 

  171. Waeckerle-Men Y, Uetz-von Allmen E, Fopp M, von Moos R, Bohme C, Schmid HP et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol Immunother 2006; 55: 1524–1533.

    Article  PubMed  Google Scholar 

  172. Fuessel S, Meye A, Schmitz M, Zastrow S, Linne C, Richter K et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial. Prostate 2006; 66: 811–821.

    Article  CAS  PubMed  Google Scholar 

  173. Burch PA, Breen JK, Buckner JC, Gastineau DA, Kaur JA, Laus RL et al. Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin Cancer Res 2000; 6: 2175–2182.

    CAS  PubMed  Google Scholar 

  174. Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 2000; 18: 3894–3903.

    Article  CAS  PubMed  Google Scholar 

  175. Burch PA, Croghan GA, Gastineau DA, Jones LA, Kaur JS, Kylstra JW et al. Immunotherapy (APC8015, Provenge) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a phase 2 trial. Prostate 2004; 60: 197–204.

    Article  CAS  PubMed  Google Scholar 

  176. Beinart G, Rini BI, Weinberg V, Small EJ . Antigen-presenting cells 8015 (Provenge) in patients with androgen-dependent, biochemically relapsed prostate cancer. Clin Prostate Cancer 2005; 4: 55–60.

    Article  CAS  PubMed  Google Scholar 

  177. Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ . Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (Provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer 2006; 107: 67–74.

    Article  CAS  PubMed  Google Scholar 

  178. Lin AM, Hershberg RM, Small EJ . Immunotherapy for prostate cancer using prostatic acid phosphatase loaded antigen presenting cells. Urol Oncol 2006; 24: 434–441.

    Article  CAS  PubMed  Google Scholar 

  179. Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 2001; 167: 7150–7156.

    Article  CAS  PubMed  Google Scholar 

  180. Simons JW, Sacks N . Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol 2006; 24: 419–424.

    Article  CAS  PubMed  Google Scholar 

  181. Shen L, Rock KL . Cellular protein is the source of cross-priming antigen in vivo. Proc Natl Acad Sci USA 2004; 101: 3035–3040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vieweg J, Rosenthal FM, Bannerji R, Heston WD, Fair WR, Gansbacher B et al. Immunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines. Cancer Res 1994; 54: 1760–1765.

    CAS  PubMed  Google Scholar 

  183. Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, Lim M et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999; 59: 5160–5168.

    CAS  PubMed  Google Scholar 

  184. Eaton JD, Perry MJ, Nicholson S, Guckian M, Russell N, Whelan M et al. Allogeneic whole-cell vaccine: a phase I/II study in men with hormone-refractory prostate cancer. BJU Int 2002; 89: 19–26.

    Article  CAS  PubMed  Google Scholar 

  185. Michael A, Ball G, Quatan N, Wushishi F, Russell N, Whelan J et al. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin Cancer Res 2005; 11: 4469–4478.

    Article  CAS  PubMed  Google Scholar 

  186. Suckow MA, Rosen ED, Wolter WR, Sailes V, Jeffrey R, Tenniswood M . Prevention of human PC-346C prostate cancer growth in mice by a xenogeneic tissue vaccine. Cancer Immunol Immunother 2007 (E-pub ahead of print).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Elkord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkord, E. Immunology and immunotherapy approaches for prostate cancer. Prostate Cancer Prostatic Dis 10, 224–236 (2007). https://doi.org/10.1038/sj.pcan.4500964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500964

Keywords

This article is cited by

Search

Quick links