Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cluster-derived structures and conductance fluctuations in nanowires

Abstract

Understanding the variation of a material's properties with size, form of aggregation and dimensionality is becoming important in the face of increasing miniaturization of electronic and mechanical devices. Experimental studies have focused on the preparation and characterization of solid-state nanometre-scale structures such as metal and semiconductor nanocrystals1,2,3, surface-supported structures and quantum dots4 and nanoscale junctions or wires5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. It has emerged that these nanostructures can often be fruitfully described using concepts and methodologies developed in the contexts of gas-phase atomic clusters and atomic nuclei23,24,25. Here we make this connection explicitly through first-principle molecular dynamics simulations22,26 which show that, as nanowires of sodium metal are stretched to just a few atoms in diameter, the structures formed by metal atoms in the neck can be described in terms of those observed in small gas-phase sodium clusters27. We find that the electronic spectral and conductance characteristics of these atomic-scale contacts exhibit dynamical thermal fluctuations on a sub-picosecond timescale, owing to rearrangements of the metal atoms, which will significantly affect the transport properties of such nanowires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic configurations of a sodium nanowire at selected elongation stages, obtained through first-principles molecular dynamics simu.
Figure 2: Contour plots of the local part of the self-consistent LSD effective potentials corresponding to the wire configurations s.hown in Fig. 1b (top panel) and Fig. 1e (bottom panel); contours inside the repulsive atomic cores, where the non-local contribution is significant, are not shown.
Figure 3: Spectral and conductance characteristics for the 23.97-å nanowire (Fig. 1b).

Similar content being viewed by others

References

  1. Whetten, R. L. et al. Nanocrystal gold molecules. Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  2. Luedtke, W. D. & Landman, U. Structure, dynamics and thermodynamics of passivated gold nanocrystallites and their assemblies. J. Phys. Chem. 100, 13323–13329 (1996).

    Article  CAS  Google Scholar 

  3. Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Avouris, P. (ed.) Atomic and Nanometer-Scale Modification of Materials: Fundamentals and Applications(Kluwer, Dordrecht, (1993)).

    Book  Google Scholar 

  5. Landman, U., Luedtke, W. D., Burnham, N. & Colton, R. J. Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture. Science 248, 454–461 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Bogachek, E. N., Zagoskin, A. M. & Kulik, I. O. Conductance jumps and magnetic flux quantization in ballistic point contacts. Sov. J. Low Temp. Phys. 16, 796–800 (1990); Fiz. Nizk. Temp. 16, 1404–1411 (1990).

    Google Scholar 

  7. Pascual, J. I. et al. Quantum contact in gold nanostructures by scanning-tunneling microscopy. Phys. Rev. Lett. 71, 1852–1855 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Olesen, L. et al. Quantized conductance in an atom-sized point contact. Phys. Rev. Lett. 72, 2251–2254 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Pascual, J. I. et al. Properties of metallic nanowires: from conductance quantization to localization. Science 267, 1793–1795 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Krans, J. M., van Ruitenbeek, J. M., Fisun, V. V., Yanson, I. K. & de Jongh, L. J. The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Smith, D. P. E. Quantum point contact switches. Science 269, 371–373 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Bratkovsky, A. M., Sutton, A. P. & Todorov, T. N. Conditions for conductance quantization in realistic models of atomic-scale metallic contacts. Phys. Rev. B 52, 5036–5051 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Costra-Kramer, J. L., Garcia, N., Garcia-Mochales, P. & Serena, P. A. Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top. Surface Sci. 342, 11144–11449 (1995).

    ADS  Google Scholar 

  14. Lang, N. D. Resistance of atomic wires. Phys. Rev. B 52, 5335–5342 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Garcia-Martin, A., Torres, J. A. & Saenz, J. J. Finite size corrections to the conductance of ballistic wires. Phys. Rev. B 54, 13448–13451 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Rubio, G., Agrait, N. & Vieira, S. Atomic-sized metallic contacts; mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Scherbakov, A. G., Bogachek, E. N. & Landman, U. Quantum electronic transport through three-dimensional microconstrictions with variable shapes. Phys. Rev. B 53, 4054–4064 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Bogachek, E. N., Scherbakov, A. G. & Landman, U. Magnetic switching and thermal enhancement of quantum transport through nanowires. Phys. Rev. B 53, R13246–R13249 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Landman, U., Luedtke, W. D., Salisbury, B. E. & Whetten, R. L. Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions. Phys. Rev. Lett. 77, 1362–1365 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Landman, U., Luedtke, W. D. & Gao, J. Atomic-scale issues in tribology: interfacial junctions and nano-elastohydrodynamics. Langmuir 12, 4514–4528 (1996).

    Article  CAS  Google Scholar 

  21. Stalder, A. & Durig, U. Study of yielding mechanics in nanometer-sized Au contacts. Appl. Phys. Lett. 68, 637–639 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Landman, U., Barnett, R. N. & Luedtke, W. D. Nanowires: size evolution reversibility and one-atom contacts. Z. Physik D(in the press).

  23. de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–675 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Martin, T. P. (ed.) Large Clusters of Atoms and Molecules(Kluwer, Dordrecht, (1996).

    Book  Google Scholar 

  25. Yannouleas, C. & Landman, U. in Large Clusters of Atoms and Molecules(ed. Martin, T. P.) 131–200 (Kluwer, Doredrecht, (1996)).

    Book  Google Scholar 

  26. Barnett, R. N. & Landman, U. Born-Oppenheimer molecular-dynamics simulations of finite systems: structure and dynamics of (H2O)2. Phys. Rev. B 48, 2081–2097 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Haberland, H. (ed.) Clusters of Atoms and Molecules(Springer Ser. in Chem. Phys. 52 & 57, Springer, Berlin, (1994)).

    Google Scholar 

  28. Troulier, N. & Martin, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  ADS  Google Scholar 

  29. Thouless, D. J. & Kirpartrick, S. Conductivity of the disordered linear chain. J. Phys. C 14, 235–245 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Imry, Y. & Shiren, N. Energy averaging and the flux-periodic phenomena in small normal-metal rings. Phys. Rev. B 33, 7992–7997 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Flyvbjerg, H. & Petersen, H. G. Error estimates on averages of correlated data. J. Chem. Phys. 91, 461–466 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. Bogachek, E. N., Scherbakov, A. G. & Landman, U. Shape-effects on conductance quantization in three-dimensional nanowires: hard versus soft potentials. Phys. Rev. B(in the press).

Download references

Acknowledgements

Calculations were performed at the National Energy Research Scientific Computing Center, Lawrence Berkeley, CA, and the GIT Center for Computational Materials Science. This work was supported by the DOE and AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uzi Landman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, R., Landman, U. Cluster-derived structures and conductance fluctuations in nanowires. Nature 387, 788–791 (1997). https://doi.org/10.1038/42904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42904

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing