Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein

Abstract

N-linked glycosylation of proteins in eukaryotic cells follows a highly conserved pathway. The tetradecasaccharide substrate (Glc3Man9GlcNAc2) is first assembled at the membrane of the endoplasmic reticulum (ER) as a dolichylpyrophosphate (Dol-PP)-linked intermediate, and then transferred to nascent polypeptide chains in the lumen of the ER1. The assembly of the oligosaccharide starts on the cytoplasmic side of the ER membrane with the synthesis of a Man5GlcNAc2-PP-Dol intermediate. This lipid-linked intermediate is then translocated across the membrane so that the oligosaccharides face the lumen of the ER, where the biosynthesis of Glc3Man9GlcNAc2-PP-Dol continues to completion. The fully assembled oligosaccharide is transferred to selected asparagine residues of target proteins. The transmembrane movement of lipid-linked Man5GlcNAc2 oligosaccharide is of fundamental importance in this biosynthetic pathway, and similar processes involving phospholipids and glycolipids are essential in all types of cells2,3,4. The process is predicted to be catalysed by proteins, termed flippases, which to date have remained elusive2,3,4. Here we provide evidence that yeast RFT1 encodes an evolutionarily conserved protein required for the translocation of Man5GlcNAc2-PP-Dol from the cytoplasmic to the lumenal leaflet of the ER membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of the N-linked oligosaccharides requires enzymatic reactions on both sides of the ER membrane.
Figure 2: RFT1 repression reduces N-linked glycosylation by altering the synthesis of lipid-linked oligosaccharides.
Figure 3: RFT1 repression results in a distinct protein glycosylation defect.
Figure 4: Overexpression of RFT1 improves N-linked glycosylation in a Δ alg11 strain.
Figure 5: Overexpression of RFT1 improves growth of Δ alg11 (YG1365) and Δ alg3 Δ alg11 (YG1363) strains.

Similar content being viewed by others

References

  1. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Bugg, T. D. & Brandish, P. E. From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol. Lett. 119, 255–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Higgins, C. F. Flip-flop: the transmembrane translocation of lipids. Cell 79, 393–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nature Rev. Mol. Cell Biol. 2, 504–513 (2001).

    Article  CAS  Google Scholar 

  5. Hettema, E. H. & Tabak, H. F. Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim. Biophys. Acta 1486, 18–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Borst, P., Zelcer, N. & van Helvoort, A. ABC transporters in lipid transport. Biochim. Biophys. Acta 1486, 128–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Abeijon, C. & Hirschberg, C. B. Topography of glycosylation reactions in the endoplasmic reticulum. Trends. Biochem. Sci. 17, 32–36 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Burda, P. & Aebi, M. The dolichol pathway of N-glycosylation. Biochim. Biophys. Acta 1426, 239–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Perez, M. & Hirschberg, C. B. Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. J. Biol. Chem. 261, 6822–6830 (1986).

    CAS  PubMed  Google Scholar 

  10. Snider, M. D. & Rogers, O. C. Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis. Cell 36, 753–761 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. McCloskey, M. A. & Troy, F. A. Paramagnetic isoprenoid carrier lipids. 1. Chemical synthesis and incorporation into model membranes. Biochemistry 19, 2056–2060 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Hanover, J. A. & Lennarz, W. J. The topological orientation of N,N′- diacetylchitobiosylpyrophosphoryldolichol in artificial and natural membranes. J. Biol. Chem. 254, 9237–9246 (1979).

    CAS  PubMed  Google Scholar 

  13. Huffaker, T. C. & Robbins, P. W. Yeast mutants deficient in protein glycosylation. Proc. Natl. Acad. Sci. USA 80, 7466–7470 (1983).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cipollo, J. F., Trimble, R. B., Chi, J. H., Yan, Q. & Dean, N. The Yeast ALG11 gene specifies addition of the terminal alpha 1,2-Man to the Man5GlcNAc2-PP-dolichol N-glycosylation intermediate formed on the cytosolic side of the endoplasmic reticulum. J. Biol. Chem. 276, 21828–21840 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ng, D. T., Spear, E. D. & Walter, P. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell Biol. 150, 77–88 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davidson, E. A. & Gowda, D. C. Glycobiology of Plasmodium falciparum. Biochimie 83, 601–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hasilik, A. & Tanner, W. Carbohydrate moiety of carboxypeptidase Y and perturbation of its biosynthesis. Eur. J. Biochem. 91, 567–575 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Aebi, M., Gassenhuber, J., Domdey, H. & te Heesen, S. Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6, 439–444 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Orlean, P. Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O-mannosylation, and N-glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5796–5805 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orlean, P., Kuranda, M. J. & Albright, C. F. Analysis of glycoproteins from Saccharomyces cerevisiae. Methods Enzymol. 194, 682–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Jelinek-Kelly, S. & Herscovics, A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Purification of the alpha-mannosidase which removes one specific mannose residue from Man9GlcNAc. J. Biol. Chem. 263, 14757–14763 (1988).

    CAS  PubMed  Google Scholar 

  22. Rush, J. S. & Wächter, C. J. Transmembrane movement of a water-soluble analogue of mannosylphosphoryldolichol is mediated by an endoplasmic reticulum protein. J. Cell Biol. 130, 529–536 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, Q. et al. Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J. Biol. Chem. 272, 18240–18244 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Schaffer, J. E. & Lodish, H. F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79, 427–436 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Feldman, M. F. et al. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J. Biol. Chem. 274, 35129–35138 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Guthrie, C. & Fink, G. R. Guide to yeast genetics and molecular biology. Methods Enzymol. 194, 3–37 (1991).

    Article  Google Scholar 

  27. Zufferey, R. et al. STT3, a highly conserved protein required for yeast oligosaccharyltransferase activity in vitro. EMBO J. 14, 4949–4960 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wach, A. et al. in Methods in Microbiology: Yeast Gene Analysis (eds Tuite, M. & Brown, A. J.) 67–81 (Academic, San Diego, 1998).

    Book  Google Scholar 

Download references

Acknowledgements

We thank C. J. Waechter for his contributions. We also thank F. Reggiori and A. Conzelmann, and T. Immervoll and M. Gentzsch for providing antibodies against Gas1 protein and chitinase, respectively. P. Orlean provided the dpm1-6 strain. This work was supported by grants from the Swiss National Science Foundation to M.A., the National Institutes of Health to P.W. and D.T.W.N., and the Canadian Institutes of Health Research to M.A.V. P.W. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Aebi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helenius, J., Ng, D., Marolda, C. et al. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415, 447–450 (2002). https://doi.org/10.1038/415447a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415447a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing