Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dark cluster of galaxies at redshift z = 1

Abstract

The abundance of metals in the hot, gaseous X-ray haloes of galaxy clusters depends crucially on the evolution of the constituent galaxies and their associated stellar populations. The metal abundances in X-ray clusters at high redshifts should therefore provide important insights into the nature and epoch of galaxyformation. Here we report the detection of an extended X-ray source in the direction of the lensed quasi-stellar object MG2016+112 (refs 1, 2). Although deep optical searches have failed to reveal a galaxy cluster at the lens position3,4, the X-ray emission is consistent with thermal bremsstrahlung radiation from a hot metal-rich, diffuse gaseous halo, as observed in nearby galaxy clusters. This is the most distant galaxy cluster discovered in X-rays so far. Furthermore, the mass of the cluster derived from this emission is consistent with that implied by lensing models of the system5. Given that the cluster apparently comprises few galaxies, yet contains a large amount of iron, a new type of astronomical object is implied by our results. A revision of theoretical models of the metal enrichment process in galaxy clusters may therefore be required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray spectrum of AX J2019+1127 obtained by ASCA.
Figure 2: X-ray image of AX J2019+1127 obtained by the Rosat HRI.
Figure 3: The background-subtracted X-ray surface brightness profile of AX J2019+1127 obtained by the Rosat HRI (data points).

Similar content being viewed by others

References

  1. Lawrence, C. R. et al. Discovery of a new gravitational lens system. Science 223, 46–49 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Lawrence, C. R. in Astrophysical Applications of Gravitational Lensing (eds Kochanek, C. S. & Hewitt, J. N.) 299–304 (Springer, Berlin, (1995)).

    Google Scholar 

  3. Schneider, D. P. et al. Deep optical and radio observations of the gravitational lens system 2016+112. Astrophys. J. 294, 66–69 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Langston, G. I., Fischer, J. & Aspin, C. Infrared K-band observations of the gravitational lens 2016+112. Astron. J. 102, 1253–1257 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Narasimha, D., Subramanian, K. & Chitre, S. M. The gravitational lens system 2016+112 revised. Astrophys. J. 315, 434–439 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Schneider, D. P. et al. The third image, the redshift of the lens, and new components of the gravitational lens 2016+112. Astron. J. 91, 991–997 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Raymond, J. C. & Smith, B. W. Soft X-ray spectrum of a hot plasma. Astrophys. J. Suppl. Ser. 35, 419–439 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Anders, E. & Grevesse, N. Abundances of the elements — meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Dickey, J. M. & Lockman, F. J. HI in the Galaxy. Annu. Rev. Astron. Astrophys. 28, 215–261 (1990).

    Article  ADS  CAS  Google Scholar 

  10. David, L., Slyz, A., Jones, C., Forman, W. & Vrtilek, S. D. Acatalog of intracluster gas temperatures. Astrophys. J. 412, 479–488 (1993).

    Article  ADS  Google Scholar 

  11. Tsuru, T. et al. in The 11th Int. Colloq. on UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas (eds Watanabe, T. & Yamashita, K.) 375–378 (Universal Academy, Tokyo, (1996)).

    Google Scholar 

  12. Williams, O. R. et al. The X-ray spectra of high-luminosity active galactic nuclei observed by GINGA. Astrophys. J. 389, 157–178 (1992).

    Article  ADS  Google Scholar 

  13. La Franca, F., Franceschini, A., Cristiani, S. & Vio, R. On the relationship between the optical and X-ray luminosities of quasars. Astron. Astrophys. 299, 19–24 (1995).

    ADS  Google Scholar 

  14. Gioia, I. M. & Luppino, G. A. The EMSS Catalog of X-ray selected clusters of galaxies. I. An atlas of CCD images of 41 distant clusters. Astrophys. J. Suppl. Ser. 94, 583–614 (1994).

    Article  ADS  Google Scholar 

  15. Luppino, G. A. & Gioia, I. M. Constraints on cold dark matter theories from observations of massive X-ray-luminous clusters of galaxies at high redshift. Astrophys. J. 445, L77–L80 (1995).

    Article  ADS  Google Scholar 

  16. Briel, U. G., Henry, J. P. & Böhringer, H. Observation of the Coma cluster of galaxies with ROSAT during the All-Sky Survey. Astron. Astrophys. 259, L31–L34 (1992).

    ADS  CAS  Google Scholar 

  17. Ohashi, T. in Proc. 17th Texas Symp. on Relativistic Astrophysics and Cosmology (eds Böhringer, H., Morfill, G. E. & Trümper, J. E.) 217–220 (New York Acad. Sci., New York, (1995)).

    Google Scholar 

  18. Donahue, M. Temperature and metallicity of a massive X-ray cluster at redshift 0.5. Astrophys. J. 468, 79–85 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Arnaud, M., Rothenflug, R., Boullade, O., Vigroux, L. & Vangioni-Flam, E. Some constraints on the origin of the iron enriched intra-cluster medium. Astron. Astrophys. 254, 49–64 (1992).

    ADS  CAS  Google Scholar 

  20. Hattori, M. & Terasawa, N. Metal enrichment of the intracluster medium from protogalaxies and the gamma-ray bursters. Astrophys. J. 406, L55–L58 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Ebeling, H., Mendes de Oliveira, C. & White, D. A. A2572 and HCG94 — galaxy clusters but not as we know them: an X-ray case study of optical misclassifications. Mon. Not. R. Astron. Soc. 277, 1006–1032 (1995).

    Article  ADS  Google Scholar 

  22. Tanaka, Y., Inoue, H. & Holt, S. S. The X-ray astronomy satellite ASCA. Publ. Astron. Soc. Jpn 46, L37–L41 (1994).

    ADS  CAS  Google Scholar 

  23. Trümper, J. E. ROSAT. Phys. Scripta T7, 209–215 (1984).

    Article  ADS  Google Scholar 

  24. Sarazin, C. L. X-ray emissions from clusters of galaxies. Rev. Mod. Phys. 58, 1–116 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Sonobe, T. Miyaji, C. R. Lawrence, Y. Tanaka and M. Matsuoka for discussions. M.H. was supported in part by the post-doctoral program of the Max-Planck Gesellschaft and Yamada Science Foundation; Y.I. was supported by the Special Researchers' Basic Science Program of the Riken. H.B. and S.S. thank the Verbundforschung for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, M., Ikebe, Y., Asaoka, I. et al. A dark cluster of galaxies at redshift z = 1. Nature 388, 146–148 (1997). https://doi.org/10.1038/40572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40572

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing