Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes

Abstract

Recent neuroimaging and postmortem studies have reported abnormalities in white matter of schizophrenic brains, suggesting the involvement of oligodendrocytes in the etiopathology of schizophrenia. This view is being supported by gene microarray studies showing the downregulation of genes related to oligodendrocyte function and myelination in schizophrenic brain compared to control subjects. However, there is currently little information available on the response of oligodendrocytes to antipsychotic drugs (APDs), which could be invaluable for corroborating the oligodendrocyte hypothesis. In this study we found: (1) quetiapine (QUE, an atypical APD) treatment in conjunction with addition of growth factors increased the proliferation of neural progenitors isolated from the cerebral cortex of embryonic rats; (2) QUE directed the differentiation of neural progenitors to oligodendrocyte lineage through extracellular signal-related kinases; (3) addition of QUE increased the synthesis of myelin basic protein and facilitated myelination in rat embryonic cortical aggregate cultures; (4) chronic administration of QUE to C57BL/6 mice prevented cortical demyelination and concomitant spatial working memory impairment induced by cuprizone, a neurotoxin. These findings suggest a new neural mechanism of antipsychotic action of QUE, and help to establish a role for oligodendrocytes in the etiopathology and treatment of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  2. Bloom FE . Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 1993; 50: 224–227.

    Article  CAS  PubMed  Google Scholar 

  3. Murray RM, Lewis SW . Is schizophrenia a neurodevelopmental disorder? BMJ 1987; 296: 681–682.

    Article  Google Scholar 

  4. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  PubMed  Google Scholar 

  5. Bartzokis G, Beckson M, Lu PH, Nuechterlein K, Edwards N, Mintz J . Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58: 461–465.

    Article  CAS  PubMed  Google Scholar 

  6. Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B, Gellad F . Brain morphology and schizophrenia: a magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 1992; 49: 921–926.

    Article  CAS  PubMed  Google Scholar 

  7. Buchanan RW, Vladar K, Barta PE, Pearlson GD . Structural evaluation of the prefrontal cortex in schizophrenia. Am J Psychiatry 1998; 155: 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  8. Cannon TD, van Erp TG, Huttunen M, Lonnqvist J, Salonen O, Valanne L et al. Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 1998; 55: 1084–1091.

    Article  CAS  PubMed  Google Scholar 

  9. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry 2000; 57: 471–480.

    Article  CAS  PubMed  Google Scholar 

  10. Kubicki M, Park H, Westin CF, Nestor PG, Mulkern RF, Maier SE et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. NeuroImage 2005; 26: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  11. Schlosser RG, Nenadic I, Wagner G, Gullmar D, von Consbruch K, Kohler S et al. White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophr Res 2007; 89: 1–11.

    Article  PubMed  Google Scholar 

  12. Minami T, Nobuhara K, Okugawa G, Takase K, Yoshida T, Sawada S et al. Diffusion tensor magnetic resonance imaging of disruption of regional white matter in schizophrenia. Neuropsychobiology 2003; 47: 141–145.

    Article  CAS  PubMed  Google Scholar 

  13. Hoptman MJ, Ardekani BA, Butler PD, Nierenberg J, Javitt DC, Lim KO . DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport 2004; 15: 2467–2470.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ardekani BA, Nierenberg J, Hoptman MJ, Javitt DC, Lim KO . MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport 2003; 14: 2025–2029.

    Article  PubMed  Google Scholar 

  15. Walterfang M, Wood SJ, Velakoulis D, Copolov D, Pantelis C . Diseases of white matter and schizophrenia-like psychosis. Aust NZ J Psychiatry 2005; 39: 746–756.

    Article  Google Scholar 

  16. Elvidge A, Reed G . Biopsy studies of cerebral pathologic changes in schizophrenia and manic-depressive psychosis. Arch Neurol Psychiatry 1938; 40: 227–268.

    Article  Google Scholar 

  17. Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A et al. Convergent evidence for 2′, 3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 2006; 63: 18–24.

    Article  CAS  PubMed  Google Scholar 

  18. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2005; 362: 798–805.

    Article  Google Scholar 

  20. Katsel P, Davis KL, Haroutunian V . Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 2005; 79: 157–173.

    PubMed  Google Scholar 

  21. Aberg K, Saetre P, Jareborg N, Jazin E . Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci USA 2006; 103: 7482–7487.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gravel M, Peterson J, Yong VW, Kottis V, Trapp B, Braun PE . Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol Cell Neurosci 1996; 7: 453–466.

    Article  CAS  PubMed  Google Scholar 

  23. Schachner M, Bartsch U . Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 2000; 29: 154–165.

    Article  CAS  PubMed  Google Scholar 

  24. Yakovlev PI, Lecours AR . The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed). Regional Development of the Brain in Early Life. Blackwell: Boston, 1967,pp 3–70.

    Google Scholar 

  25. Benes FM, Turtle M, Khan Y, Farol P . Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994; 51: 477–484.

    Article  CAS  PubMed  Google Scholar 

  26. Bartzokis G, Nuechterlein KH, Lu PH, Gitlin M, Rogers S, Mintz J . Dysregulated brain development in adult men with schizophrenia: a magnetic resonance imaging study. Biol Psychiatry 2003; 53: 412–421.

    Article  PubMed  Google Scholar 

  27. Andreone N, Tansella M, Cerini R, Rambaldelli G, Versace A, Marrella G et al. Cerebral atrophy and white matter disruption in chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci 2007; 257: 3–11.

    Article  PubMed  Google Scholar 

  28. Narayan S, Kass KE, Thomas EA . Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain. J Neurosci Res 2007; 85: 757–765.

    Article  CAS  PubMed  Google Scholar 

  29. Matsushima GK, Morell P . The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 2001; 11: 107–116.

    Article  CAS  PubMed  Google Scholar 

  30. Reynolds BA, Weiss S . Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255: 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  31. Honegger P, Lenoir D, Favrod P . Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium. Nature 1979; 282: 305–308.

    Article  CAS  PubMed  Google Scholar 

  32. Devon RM . Comparison of oligodendrocytes grown in neocortex and spinal cord aggregate cultures. Brain Res 1987; 429: 289–294.

    Article  CAS  PubMed  Google Scholar 

  33. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. Identification of a novel inhibitor of mitogen-activated protein kinase. J Biol Chem 1998; 273: 18623–18632.

    Article  CAS  PubMed  Google Scholar 

  34. Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJM . Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 2003; 13: 329–339.

    Article  PubMed  Google Scholar 

  35. Councill JH, Tucker ES, Haskell GT, Maynard TM, Meechan DW, Hamer RM et al. Limited influence of olanzapine on adult forebrain neural precursors invitro. Neuroscience 2006; 140: 111–122.

    Article  CAS  PubMed  Google Scholar 

  36. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH . IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 2004; 164: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palacios N, Sanchez-Franco F, Fernandez M, Sanchez I, Cacicedo L . Intracellular events mediating insulin-like growth factor I-induced oligodendrocyte development: modulation by cyclic AMP. J Neurochem 2005; 95: 1091–1107.

    Article  CAS  PubMed  Google Scholar 

  38. Baumann N, Pham-dinh D . Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81: 871–927.

    Article  CAS  PubMed  Google Scholar 

  39. Diemel LT, Jackson SJ, Cuzner ML . Role for TGF-β1, FGF-2 and PDGF-AA in a myelination of CNS aggregate cultures enriched with macrophages. J Neurosci Res 2003; 74: 858–867.

    Article  CAS  PubMed  Google Scholar 

  40. Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ et al. Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J 2005; 5: 298–304.

    Article  CAS  PubMed  Google Scholar 

  41. Ferno J, Skrede S, Vik-Mo AO, Havik B, Steen VM . Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. BMC Neurosci 2006; 7: 69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Glahn DC, Therman S, Manninen M, Huttunen M, Kaprio J, Lonnqvist J et al. Spatial working memory as an endophenotype for schizophrenia. Biol Psychiatry 2003; 53: 624–626.

    Article  PubMed  Google Scholar 

  43. Park WK, Jeong D, Cho H, Lee SJ, Cha MY, Pae AN et al. KKHA-761, a potent D3 receptor antagonist with high 5-HT1A receptor affinity, exhibits antipsychotic properties in animal models of schizophrenia. Pharmacol Biochem Behav 2005; 82: 361–372.

    Article  CAS  PubMed  Google Scholar 

  44. Gustafsson B, Christensson E . Amperozide—a new putatively antipsychotic drug with a limbic mode of action on dopamine mediated behaviour. Pharmacol Toxicol 1990; 66 (Suppl 1): 12–17.

    Article  CAS  PubMed  Google Scholar 

  45. Ogren SO, Hall H, Kohler C, Magnusson O, Lindbom LO, Angeby K et al. Remoxipride, a new potential antipsychotic compound with selective antidopaminergic actions in the rat brain. Eur J Pharmacol 1984; 102: 459–474.

    Article  CAS  PubMed  Google Scholar 

  46. Tandon R . Quetiapine has a direct effect on the negative symptoms of schizophrenia. Hum Psychopharmacol 2004; 19: 559–563.

    Article  CAS  PubMed  Google Scholar 

  47. Sax KW, Strakowski SM, Keck Jr PE . Attentional improvement following quetiapine fumarate treatment in schizophrenia. Schizophr Res 1998; 33: 151–155.

    Article  CAS  PubMed  Google Scholar 

  48. Hof PR, Haroutunian V, Friedrich Jr VL, Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  49. Weissman IL, Anderson DJ, Gage F . Stem and progenitor cells: origins, phenotypes, lineage commitments, and trans-differentiations. Annu Rev Cell Dev Biol 2001; 17: 387–403.

    Article  CAS  PubMed  Google Scholar 

  50. Morrison RS, Kornblum HI, Leslie FM, Bradshaw RA . Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor. Science 1987; 238: 72–75.

    Article  CAS  PubMed  Google Scholar 

  51. Zheng W, Nowakowski RS, Vaccarino FM . Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci 2004; 26: 181–196.

    Article  CAS  PubMed  Google Scholar 

  52. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 2006; 11: 514–522.

    Article  CAS  PubMed  Google Scholar 

  53. Fumagalli F, Molteni R, Bedogni F, Gennarelli M, Perez J, Racagni G et al. Quetiapine regulates FGF-2 and BDNF expression in the hippocampus of animals treated with MK-801. Neuroreport 2004; 15: 2109–2112.

    Article  CAS  PubMed  Google Scholar 

  54. Riva MA, Molteni R, Tascedda F, Massironi A, Racagni G . Selective modulation of fibroblast growth factor-2 expression in the rat brain by the atypical antipsychotic clozapine. Neuropharmacology 1999; 38: 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  55. Hyde TM, Ziegler JC, Weinberger DR . Psychiatric disturbances in metachromatic leukodystrophy: insights into the neurobiology of psychosis. Arch Neurol 1992; 49: 401–406.

    Article  CAS  PubMed  Google Scholar 

  56. Eliez S, Antonarakis SE, Morris MA, Dahoun SP, Reiss AL . Parental origin of the deletion 22q11.2 and brain development in velofacial syndrome. Arch Gen Psychiatry 2001; 58: 64–68.

    Article  CAS  PubMed  Google Scholar 

  57. Eliez S, Schmitt JE, White CD, Reiss AL . Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatry 2000; 157: 409–415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Gabriel Stegeman for her technical assistance. We thank Drs Sergey Fedoroff and Augusto Juorio for their helpful comments during the preparation of this manuscript. We also thank Dr Cheryl Corcoran for her editorial assistance. LX was supported by Canadian Psychiatric Research Foundation and Schizophrenia Society of Saskatchewan. YZ was supported by Saskatchewan Health Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R M Devon or X M Li.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Xu, H., Zhang, Y. et al. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry 13, 697–708 (2008). https://doi.org/10.1038/sj.mp.4002064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002064

Keywords

This article is cited by

Search

Quick links