Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder

Abstract

The serotonin transporter gene (SLC6A4, MIM 182138) is a candidate gene in autistic disorder based on neurochemical, neuroendocrine studies and the efficacy of potent serotonin transporter inhibitors in reducing ritualistic behaviors and related aggression. An insertion/deletion polymorphism (5-HTTLPR) in the promoter region and a variable number of tandem repeat polymorphism (VNTR) in the second intron, were previously identified and suggested to modulate transcription. Six previous family-based association studies of SLC6A4 in autistic disorder have been conducted, with four studies showing nominally significant transmission disequilibrium and two studies with no evidence of nominally significant transmission disequilibrium. In the present study, TDT was conducted in 81 new trios. A previous finding of transmission disequilibrium between a haplotype consisting of the 5-HTTLPR and intron 2 VNTR was replicated in this study, but not preferential transmission of 5-HTTLPR as an independent marker. Because of inconsistent transmission of 5-HTTLPR across studies, SLC6A4 and its flanking regions were sequenced in 10 probands, followed by typing of 20 single nucleotide polymorphisms (SNPs) and seven simple sequence repeat (SSR) polymorphisms in 115 autism trios. When individual markers were analyzed by TDT, seven SNP markers and four SSR markers (six SNPs, 5-HTTLPR and the second intron VNTR from promoter 1A through intron 2 of SLC6A4, one SSR from intron 7 of SLC6A4, one SNP from the bleomycin hydrolase gene (BLMH, MIM 602403) and one SSR telomeric to BLMH) showed nominally significant evidence of transmission disequilibrium. Four markers showed stronger evidence of transmission disequilibrium (TDTmax P = 0.0005) than 5-HTTLPR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a strongly genetic disorder: evidence from a British twin study Psychol Med 1995 25: 63–78

    Article  CAS  PubMed  Google Scholar 

  2. Bailey A, Phillips W, Rutter M . Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives J Child Psychol Psychiatry 1996 37: 89–126

    Article  CAS  PubMed  Google Scholar 

  3. Lord C, Cook E, Leventhal B, Amaral D . Autism spectrum disorders Neuron 2000 28: 355–364

    Article  CAS  PubMed  Google Scholar 

  4. Cook EH . Genetics of autism Ch Adolesc Psychiatr Clin NA 2001 10: 333–350

    Article  Google Scholar 

  5. Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J et al. A genomic screen of autism: evidence for a multilocus etiology Am J Hum Genet 1999 65: 493–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001 69: 124–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schain RJ, Freedman DX . Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children J Pediatrics 1961 58: 315–320

    Article  CAS  Google Scholar 

  8. Cook E, Rowlett R, Jaselskis C, Leventhal B . Fluoxetine treatment of patients with autism and mental retardation J Am Acad Child Adolesc Psychiatry 1992 31: 739–745

    Article  PubMed  Google Scholar 

  9. Gordon C, State R, Nelson J, Hamburger S, Rapoport J . A double-blind comparison of clomipramine, desipramine, and placebo in the treatment of autistic disorder Arch Gen Psychiatry 1993 50: 441–447

    Article  CAS  PubMed  Google Scholar 

  10. McDougle C, Naylor S, Cohen D, Volkmar F, Heninger G, Price L . A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder Arch Gen Psychiatry 1996 53: 1001–1008

    Article  CAS  PubMed  Google Scholar 

  11. Cook E, Leventhal B . The serotonin system in autism Curr Opin Pediatr 1996 8: 348–354

    Article  CAS  PubMed  Google Scholar 

  12. Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS et al. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization Proc Natl Acad Sci USA 1993 90: 2542–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gelernter J, Pakstis AJ, Kidd KK . Linkage mapping of serotonin transporter protein gene SLC6A4 on chromosome 17 Hum Genet 1995 95: 677–680

    Article  CAS  PubMed  Google Scholar 

  14. Shen S, Battersby S, Weaver M, Clark E, Stephens K, Harmar AJ . Refined mapping of the human serotonin transporter (SLC6A4) gene within 17q11 adjacent to the CPD and NF1 genes Eur J Hum Genet 2000 8: 75–78

    Article  CAS  PubMed  Google Scholar 

  15. Lesch K-P, Balling U, Gross J, Strauss K, Wolozin B, Murphy D et al. Organization of the human serotonin transporter gene J Neural Transm 1994 95: 157–162

    Article  CAS  Google Scholar 

  16. Bradley CC, Blakely RD . Alternative splicing of the human serotonin transporter gene J Neurochem 1997 69: 1356–1367

    Article  CAS  PubMed  Google Scholar 

  17. Heils A, Teufel A, Petri S, Stoeber G, Riederer P, Bengel D et al. Allelic variation of human serotonin transporter gene expression J Neurochem 1996 66: 2621–2624

    Article  CAS  PubMed  Google Scholar 

  18. Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region Science 1996 274: 1527–1531

    Article  CAS  PubMed  Google Scholar 

  19. Fiskerstrand CE, Lovejoy EA, Quinn JP . An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells FEBS Lett 1999 458: 171–174

    Article  CAS  PubMed  Google Scholar 

  20. MacKenzie A, Quinn J . A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo Proc Natl Acad Sci USA 1999 96: 15251–15255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Veenstra-VanderWeele J, Anderson GM, Cook EH . Pharmacogenetics and the serotonin system: initial studies and future directions Eur J Pharmacol 2000 410: 165–181

    Article  CAS  PubMed  Google Scholar 

  22. Courtet P, Baud P, Abbar M, Boulenger J, Castelnau D, Mouthon D et al. Association between violent suicidal behavior and the low activity allele of the serotonin transporter allele Mol Psychiatry 2001 6: 338–341

    Article  CAS  PubMed  Google Scholar 

  23. Mossner R, Henneberg A, Schmitt A, Syagailo Y, Grassle M, Hennig T et al. Allelic variation of serotonin transporter expression is associated with depression in Parkinson's disease Mol Psychiatry 2001 6: 350–352

    Article  CAS  PubMed  Google Scholar 

  24. Mundo E, Walker M, Cate T, Macciardi F, Kennedy J . The role of the serotonin transporter protein gene in antidepressant-induced mania in bipolar disorder: preliminary findings Arch Gen Psychiatry 2001 58: 539–544

    Article  CAS  PubMed  Google Scholar 

  25. Cook EH Jr, Courchesne R, Lord C, Cox NJ, Yan S, Lincoln A et al. Evidence of linkage between the serotonin transporter and autistic disorder Mol Psychiatry 1997 2: 247–250

    Article  PubMed  Google Scholar 

  26. Klauck SM, Poustka F, Benner A, Lesch K-P, Poustka A . Serotonin transporter (5-HTT) gene variants associated with autism? Hum Molec Genet 1997 6: 2233–2238

    Article  CAS  PubMed  Google Scholar 

  27. Maestrini E, Lai C, Marlow A, Matthews N, Wallace S, Bailey A et al. Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families Am J Med Genet 1999 88: 492–496

    Article  CAS  PubMed  Google Scholar 

  28. Persico AM, Militerni R, Bravaccio C, Schneider C, Melmed R, Conciatori M et al. Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples Am J Med Genet 2000 96: 123–127

    Article  CAS  PubMed  Google Scholar 

  29. Yirmiya N, Pilowsky T, Nemanov L, Arbelle S, Feinsilver T, Fried I et al. Evidence for an association with the serotonin transporter promoter region polymorphism and autism Am J Med Genet (Neuropsychiatr Genet) 2001 105: 381–386

    Article  CAS  Google Scholar 

  30. Tordjman S, Gutneckt L, Carlier M, Spitz E, Antoine C, Slama F et al. Role of the serotonin transporter in the behavioral expression of autism Mol Psychiatry 2001 6: 434–439

    Article  CAS  PubMed  Google Scholar 

  31. Zhong N, Ye L, Ju W, Tsiouris J, Cohen I, Brown W . 5-HTTLPR variants not associated with autistic spectrum disorders Neuro-genetics 1999 2: 129–131

    CAS  Google Scholar 

  32. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus Nat Genet 2000 26: 163–175

    Article  CAS  PubMed  Google Scholar 

  33. Herr M, Dudbridge F, Zavattari P, Cucca F, Guja C, March R et al. Evaluation of fine mapping strategies for a multifactorial disease locus: systematic linkage and association analysis of IDDM1 in the HLA region on chromosome 6p21 Hum Mol Genet 2000 9: 1291–1301

    Article  CAS  PubMed  Google Scholar 

  34. Martin E, Lai E, Gilbert J, Rogala A, Afshari A, Riley J et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease Am J Hum Genet 2000 67: 383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin ER, Gilbert JR, Lai EH, Riley J, Rogala AR, Slotterbeck BD et al. Analysis of association at single nucleotide polymorphisms in the APOE region Genomics 2000 63: 7–12

    Article  CAS  PubMed  Google Scholar 

  36. International Molecular Genetic Study of Autism Consortium. A genome wide screen for autism: strong evidence for linkage to chromosomes 2q, 7q and 16p Am J Hum Genet 2001 69: 570–581

  37. Lord C, Rutter M, Le Couteur A . Autism diagnostic interview – revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders J Autism Dev Disord 1994 24: 659–685

    Article  CAS  PubMed  Google Scholar 

  38. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism J Autism Dev Disord 2000 30: 205–223

    Article  CAS  PubMed  Google Scholar 

  39. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (4th edn) American Psychiatric Association Press: Washington, DC 1994

  40. Chen X, Levine L, Kwok P . Fluorescence polarization in homogeneous nucleic acid analysis Genome Res 1999 9: 492–498

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cook E, Arora R, Anderson G, Berry-Kravis E, Yan S-Y, Yeoh H et al. Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder Life Sci 1993 52: 2005–2015

    Article  PubMed  Google Scholar 

  42. Glatt C, DeYoung J, Delgado S, Service S, Giacomini K, Edwards R et al. Screening a large reference sample to identify very low frequency sequence variants: comparisons between two genes Nature Genet 2001 27: 435–438

    Article  CAS  PubMed  Google Scholar 

  43. Lesch KP, Gross J, Franzek E, Wolozin BL, Riederer P, Murphy DL . Primary structure of the serotonin transporter in unipolar depression and bipolar disorder Biol Psychiatry 1995 37: 215–223

    Article  CAS  PubMed  Google Scholar 

  44. Altemus M, Murphy DL, Greenberg B, Lesch KP . Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder Am J Med Genet 1996 67: 409–411

    Article  CAS  PubMed  Google Scholar 

  45. Di Bella D, Catalano M, Balling U, Smeraldi E, Lesch KP . Systematic screening for mutations in the coding region of the human serotonin transporter (5-HTT) gene using PCR and DGGE Am J Med Genet 1996 67: 541–545

    Article  CAS  PubMed  Google Scholar 

  46. Nickerson DA, Taylor SL, Fullerton SM, Weiss KM, Clark AG, Stengard JH et al. Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene Genome Res 2000 10: 1532–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiong M, Jin L . Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods Am J Hum Genet 1999 64: 629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ardlie K, Liu-Cordero SN, Eberle MA, Daly M, Barrett J, Winchester E et al. Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion Am J Hum Genet 2001 69: 582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frisse L, Hudson RR, Bartoszewicz A, Wall JD, Donfack J, Di Rienzo A . Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels Am J Hum Genet 2001 69: 831–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bromme D, Rossi AB, Smeekens SP, Anderson DC, Payan DG . Human bleomycin hydrolase: molecular cloning, sequencing, functional expression, and enzymatic characterization Biochemistry 1996 35: 6706–6714

    Article  CAS  PubMed  Google Scholar 

  51. Papassotiropoulos A, Bagli M, Jessen F, Frahnert C, Rao ML, Maier W et al. Confirmation of the association between bleomycin hydrolase genotype and Alzheimer's disease Mol Psychiatry 2000 5: 213–215

    Article  CAS  PubMed  Google Scholar 

  52. Mortensen OV, Thomassen M, Larsen MB, Whittemore SR, Wiborg O . Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells Brain Res Mol Brain Res 1999 68: 141–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Zhi-Ying Yang and David Gonen provided expert technical assistance. Nicole Felix and Nelson Ayuyao provided database technical assistance. Jane Nofer, Marrea Winega, Susan Risi, Elisa Steele, Kathleen Kennedy Martin, Alan Lincoln, Senia Pizzo, and Richard Haas contributed to diagnostic assessments of probands. The study was supported in part by NIH R01 MH52223 (EHC, EC), K02 MH01389 (EHC), R01 NS19855 (EC), P01 HD35482 (EHC, CL), the Jean Young and Walden W Shaw Foundation (BLL), and the Irving B Harris Foundation (BLL). S-J Kim was a Daniel X Freedman Psychiatric Research Fellow during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E H Cook Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Cox, N., Courchesne, R. et al. Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol Psychiatry 7, 278–288 (2002). https://doi.org/10.1038/sj.mp.4001033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001033

Keywords

This article is cited by

Search

Quick links