Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Neurotrophin-3 modulates noradrenergic neuron function and opiate withdrawal

Abstract

Somatic symptoms and aversion of opiate withdrawal, regulated by noradrenergic signaling, were attenuated in mice with a CNS-wide conditional ablation of neurotrophin-3. This occurred in conjunction with altered cAMP-mediated excitation and reduced upregulation of tyrosine hydroxylase in A6 (locus coeruleus) without loss of neurons. Transgene-derived NT-3 expressed by noradrenergic neurons of conditional mutants restored opiate withdrawal symptoms. Endogenous NT-3 expression, strikingly absent in noradrenergic neurons of postnatal and adult brain, is present in afferent sources of the dorsal medulla and is upregulated after chronic morphine exposure in noradrenergic projection areas of the ventral forebrain. NT-3 expressed by non-catecholaminergic neurons may modulate opiate withdrawal and noradrenergic signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Koob GF, Le Moal M . Drug abuse: hedonic homeostatic dysregulation Science 1997 278: 52–58

    Article  CAS  PubMed  Google Scholar 

  2. Maldonado R . Participation of noradrenergic pathways in the expression of opiate withdrawal: biochemical and pharmacological evidence Neurosci Biobehav Rev 1997 21: 91–104

    Article  CAS  PubMed  Google Scholar 

  3. Delfs JM, Zhu Y, Druhan JP, Aston-Jones G . Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion Nature 2000 403: 430–434

    Article  CAS  PubMed  Google Scholar 

  4. Nestler EJ, Aghajanian GK . Molecular and cellular basis of addiction Science 1997 278: 58–63

    Article  CAS  PubMed  Google Scholar 

  5. Numan S, Lane-Lad SB, Zhang L, Lundgren KH, Russell DS, Seroog KB et al. Differential regulation of neurotrophin and trk receptor mRNA in catecholaminergic nuclei during chronic opiate treatment and withdrawal J Neurosci 1998 18: 10700–10708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sandell JH, Baker LS Jr, Davidov T . The distribution of neurotrophin receptor trkC like immunoreactive fibers and varicosities in the rhesus moneky brain Neuroscience 1998 86: 1181–1194

    Article  CAS  PubMed  Google Scholar 

  7. King VR, Michael GJ, Joshi RK, Priestley JV . trkA, trkB and trkC messenger RNA expression by bulbospinal cells of the rat Neuroscience 1999 92: 935–944

    Article  CAS  PubMed  Google Scholar 

  8. Davies AM, Minichiello L, Klein R . Developmental changes in NT-3 signalling via TrkA and TrkB in embryonic neurons EMBO J 1995 14: 4482–4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tessarollo L, Tsoulfas P, Donovan MJ, Palko ME, Blair-Flynn J, Hempstead BL et al. Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis Proc Natl Acad Sci USA 1997 94: 14776–14781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang EJ, Wilkinson GA, Farinas I, Backus C, Zang K, Wongl SL et al. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of trk A and trkB in addition to trkC Development 1999 126: 2191–21203

    CAS  PubMed  Google Scholar 

  11. Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF . Severe sensory and sympathetic deficits in mice lacking neurotrophin-3 Nature 1994 369: 658–661

    Article  CAS  PubMed  Google Scholar 

  12. Ernfors P, Lee K-F, Kucera J, Jaenisch R . Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents Cell 1994 77: 503–512

    Article  CAS  PubMed  Google Scholar 

  13. Donovan MJ, Hahn R, Tessarollo L, Hempstead BL . Identification of an essential non-neuronal function of Neurotrophin-3 in mammalian cardiac development Nat Genet 1996 14: 210–213

    Article  CAS  PubMed  Google Scholar 

  14. Bates B, Rios M, Trumpp A, Chen C, Fan G, Bishop JM et al. Neurotrophin-3 is required for proper cerebellar development Nat Neurosci 1999 2: 115–117

    Article  CAS  PubMed  Google Scholar 

  15. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain Nat Genet 1999 21: 70–71

    Article  CAS  PubMed  Google Scholar 

  16. Arenas E, Persson H . Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo Nature 1994 376: 368–371

    Article  Google Scholar 

  17. Kalia M, Fuxe K, Goldstein M . Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes J Comp Neurol 1985 233: 308–332

    Article  CAS  PubMed  Google Scholar 

  18. Boundy VA, Gould SJ, Messer CJ, Chen J, Son JH, Joh TH et al. Regulation of tyrosine hydroxylase promoter activity by chronic morphine in TH9.0-LacZ transgenic mice J Neurosci 1998 18: 9989–9995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tinti C, Conti B, Cubells JF, Kim KS, Baker H, Joh TH . Inducible cAMP early repressor can modulate tyrosine hydroxylase gene expression after stimulation of camp synthesis J Biol Chem 1996 271: 25375–25381

    Article  CAS  PubMed  Google Scholar 

  20. Mercer EH, Hoyle GW, Kapur RP, Brinster RL, Palmiter RD . The dopamine beta hydroxylase gene promoter directs expression of E. coli lacZ to sympathetic and other neurons in adult transgenic mice Neuron 1991 7: 703–716

    Article  CAS  PubMed  Google Scholar 

  21. Ginty DD, Bonni A, Greenberg ME . Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB Cell 1994 77: 713–725

    Article  PubMed  Google Scholar 

  22. Maldonado R, Blendy JA, Tzavara E, Gass P, Roques BP, Hanoune J et al. Reduction of morphine abstinence in mice with a mutation in the gene encoding CREB Science 1996 273: 657–659

    Article  CAS  PubMed  Google Scholar 

  23. Lane-Ladd SB, Pineda J, Boundy V, Pfeuffer T, Krupinski J, Aghajanian GK et al. CREB in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence J Neurosci 1997 17: 7890–7901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hayward MD, Duman RS, Nestler EJ . Induction of the c-fos proto oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain Brain Res 1990 525: 256–266

    Article  CAS  PubMed  Google Scholar 

  25. Kogan JH, Nestler EJ, Aghajanian GK . Elevated basal firing rates and enhanced responses to 8-Br-cAMP in locus coeruleus neurons in brain slices from opiate-dependent rats Eur J Pharmacol 1992 211: 47–53

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Ferguson SS, Barak LS, Boddulir SR, Laporte SA, Law PY et al. Role for G protein-coupled receptor kinase in agonist-specific regulation of responsiveness Proc Natl Acad Sci USA 1998 95: 7157–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vigers AJ, Baquet ZC, Jones KR . Expression of neurotrophin-3 in the mouse forebrain: insight from a targeted lacZ reporter J Comp Neurol 2000 416: 398–415

    Article  CAS  PubMed  Google Scholar 

  28. Gehlert DR, Schober DA, Gackenheimer SL . Comparison of (R)–[3H] tomoxetine and (R/S)–[3H] nisoxetine binding in rat brain J Neurochem 1995 64: 2792–2800

    Article  CAS  PubMed  Google Scholar 

  29. Sklair-Tavron L, Nestler EJ . Opposing effects of morphine and the neurotrophins, NT-3, NT-4 and BDNF, on locus coeruleus neurons in vitro Brain Res 1995 702: 117–125

    Article  CAS  PubMed  Google Scholar 

  30. Christie MJ, Williams JT, Osborne PB, Bellchambers CE . Where is the locus in opioid withdrawal? Trends Pharmacol Sci 1997 18: 134–140

    Article  CAS  PubMed  Google Scholar 

  31. Caille S, Espejo EF, Reneric JP, Cador M, Koob GF, Stinus L . Total neurochemical lesion of noradrenergic neurons of the locus coeruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal J Pharmacol Exp Ther 1999 290: 881–892

    CAS  PubMed  Google Scholar 

  32. Smith MA, Makino S, Altemus M, Michelson D, Hong SK, Kvetnansky R et al. Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus Proc Natl Acad Sci USA 1995 92: 8788–8792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DiStefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM et al. The neurotrophins BDNF, NT-3 and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons Neuron 1992 8: 983–993

    Article  CAS  PubMed  Google Scholar 

  34. Altar CA, DiStefano PS . Neurotrophin trafficking by anterograde transport Trends Neurosci 1998 21: 433–437

    Article  CAS  PubMed  Google Scholar 

  35. Conner JM, Lauterborn JC, Gall CM . Anterograde transport of neurotrophin proteins in the CNS—a reassessment of the neurotrophic hypothesis Rev Neurosci 1998 9: 91–103

    Article  CAS  PubMed  Google Scholar 

  36. Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression Neuron 1990 5: 501–509

    Article  CAS  PubMed  Google Scholar 

  37. Lauterborn JC, Isackson PJ, Gall CM . Cellular localization of NGF and NT-3 mRNAs in postnatal rat forebrain Mol Cell Neurosci 1994 5: 46–62

    Article  CAS  PubMed  Google Scholar 

  38. Acheson A, Lindsay RM . Non-target derived roles of the neurotrophins Philos Trans R Soc Lond Biol Sci 1996 351: 417–422

    Article  CAS  Google Scholar 

  39. Drolet G, Van Bockstaele EJ, Aston-Jones G . Robust enkephalin innervation of the locus coeruleus from the rostral medulla J Neurosci 1992 12: 3162–3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Bockstaele EJ, Peoples J, Telegan P . Efferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: evidence for a monosynaptic pathway J Comp Neurol 1999 412: 410–428

    Article  CAS  PubMed  Google Scholar 

  41. Duncan GE, Knapp DJ, Breese GR . Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety Brain Res 1996 713: 79–81

    Article  CAS  PubMed  Google Scholar 

  42. Desmedt A, Garcia R, Jaffard R . Vasopressin in the lateral septum promotes elemental conditoning to the detriment of contextual fear conditioning in mice Eur J Neurosci 1999 11: 3913–3921

    Article  CAS  PubMed  Google Scholar 

  43. DiCicco-Bloom E, Friedman WJ, Black IB . NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival Neuron 1993 11: 1101–1111

    Article  CAS  PubMed  Google Scholar 

  44. Albers KM, Perrone TM, Goodness TP, Jones ME, Green MA, Davis BM . Cutaneous overexpression of NT-3 increases sensory and sympathetic neuron number and enhances touch dome and hair follicle innervation J Cell Biol 1996 134: 487–497

    Article  CAS  PubMed  Google Scholar 

  45. Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C, Reichardt L et al. NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors Dev Biol 1999 210: 411–427

    Article  CAS  PubMed  Google Scholar 

  46. Moller JC, Kruttgen A, Heymach JV Jr, Ghori N, Shooter EM . Subcellular localization of epitope-tagged neurotrophins in neuroendocrine cells J Neurosci Res 1998 51: 463–472

    Article  CAS  PubMed  Google Scholar 

  47. Trumpp A, Depew MJ, Rubenstein JL, Bishop JM, Martin GR . Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch Genes Dev 1999 13: 3136–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taylor JR, Elsworth JD, Garcia EJ, Grant SJ, Roth RH, Redmond DE Jr . Clonidine infusions into the locus coeruleus attenuate behavioral and neurochemical changes associated with naloxone-precipitated withdrawal Psychopharmacology 1988 96: 121–134

    Article  CAS  PubMed  Google Scholar 

  49. Punch LJ, Self DW, Nestler EJ, Taylor JR . Opposite modulation of opiate withdrawal behaviors on microinfusion of a protein kinase A inhibitor versus activator into the locus coeruleus or periaqueductal gray J Neurosci 1997 17: 8520–8527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huerta PT, Sun LD, Wilson MA, Tonegawa ST . Formation of temporal memory requires NMDA receptors within CAI pyramidal neurons Neuron 2000 25: 473–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ruth Curry, Valyphone Phantharagnsy, Cathy Steffen, Victoria Stewart and Jeannie Reis for technical assistance, Drs Maribel Rios, Christine Konradi and William Carlezon Jr for experimental advice. This work was supported by NARSAD (National Alliance for Research on Schizophrenia and Depression), by the National Institute of Drug Abuse (NIDA) grant 1-K08-DA00479 to SA, by NCI/NIH grant 5-R35-CA44339 to RJ and by the Fidelity Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Jaenisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarian, S., Bates, B., Liu, RJ. et al. Neurotrophin-3 modulates noradrenergic neuron function and opiate withdrawal. Mol Psychiatry 6, 593–604 (2001). https://doi.org/10.1038/sj.mp.4000897

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000897

Keywords

This article is cited by

Search

Quick links