Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A lower limit of 9.5 Gyr on the age of the Galactic disk from the oldest white dwarf stars

Abstract

WHITE dwarf stars represent the final evolutionary state for most main-sequence stars. They cool slowly enough that even the oldest white dwarfs are still observable in sufficiently deep surveys and they therefore provide a record of the age and star-formation history of the local disk of the Milky Way1–7—and hence a useful constraint on the age of the Galaxy itself. Here we report the initial results of a very deep survey of white dwarfs, that avoids many of the problems associated with the incompleteness of earlier surveys. We use model age–luminosity relations to interpret the luminosity function of our sample of stars, and thus obtain a minimum age for the local Galactic disk of 9.5 Gyr. Our results lend weight to an emerging picture of the evolutionary history of the Milky Way, in which the halo formed 14–17 Gyr ago8,9, followed by the bulge globular clusters 12–14 Gyr ago10, with a modest hiatus before the onset of star formation in the local disk 10 Gyr ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Winget, D. E. et al. Astrophys. J. 315, L77–L81 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Iben, I. Jr & Laughlin, G. Astrophys. J. 341, 312–326 (1989).

    Article  ADS  Google Scholar 

  3. Wood, M. Astrophys. J. 386, 539–561 (1992).

    Article  ADS  Google Scholar 

  4. Schmidt, M. Astrophys. J. 129, 243–258 (1959).

    Article  ADS  Google Scholar 

  5. Mestel, L. & Ruderman, M. A. Mon. Not. R. Astron. Soc. 136, 27–38 (1967).

    Article  ADS  Google Scholar 

  6. Van Horn, H. Astrophys. J. 151, 227–238 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Liebert, J., Dahn, C. & Monet, D. Astrophys. J. 332, 891–909 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Bolte, M. & Hogan, C. J. Nature 376, 399–402 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Chaboyer, B. Astrophys. J. 444, L9–L12 (1995).

    Article  ADS  Google Scholar 

  10. Ortolani, S. et al. Nature 377, 701–704 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Hintzen, P., Oswalt, T. D., Liebert, J. & Sion, E. M. Astrophys. J. 346, 454–458 (1989).

    Article  ADS  Google Scholar 

  12. Oswalt, T. D., Sion, E. M., Hitzen, P. M. & Liebert, J. in White Dwarfs (eds Vauclair, G. & Sion, E.) 379–393 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  13. Oswalt, T. D. et al. in White Dwarfs: Advances in Observation & Theory (ed. Barstow, M.) 419–425 (Kluwer, Dordrecht, 1993).

    Book  Google Scholar 

  14. McCook, G. P. & Sion, E. M. Astrophys. J. Suppl. Ser. (in the press).

  15. Bergeron, P., Wesemael, F. & Beauchamp, A. Publ. Astron. Soc. Pacif. 107, 1047–1054 (1995).

    Article  ADS  Google Scholar 

  16. Oswalt, T. D. & Smith, J. A. in White Dwarfs (eds Koester, D. & Wemer, K.) 24–30 (Springer, Berlin, 1995).

    Book  Google Scholar 

  17. Smith, J. A. & Oswalt, T. D. in The Lower Main Sequence—& Beyond (ed. Tinney, C.) 113–119 (Springer, Berlin, 1995).

    Book  Google Scholar 

  18. Ruiz, M. T. & Takamiya, M. Y. Astron. J. 109, 2817–2820 (1995).

    Article  ADS  Google Scholar 

  19. Clayton, D. D. Mon. Not. R. Astron. Soc. 234, 1–36 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Schmidt, M. Astrophys. J. 151, 393–409 (1968).

    Article  ADS  Google Scholar 

  21. Ruiz, M. T., Bergeron, P., Leggett, S. K. & Anguita, C. Astrophys. J. 455, L159–L162 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Bergeron, P., Safgfer, R. & Liebert, J. Astrophys. J. 394, 228–247 (1992).

    Article  ADS  Google Scholar 

  23. Bergeron, P. et al. Astrophys. J. 449, 258–279 (1995).

    Article  ADS  Google Scholar 

  24. Liebert, J. & Bergeron, P. in White Dwarfs (eds Koester, D. & Werner, K.) 12–18 (Springer, Berlin, 1995).

    Google Scholar 

  25. Eggen, O. J., Lynden-Bell, D. & Sandage, A. R. Astrophys. J. 136, 748–766 (1962).

    Article  ADS  Google Scholar 

  26. Truran, J. W. & Theilemann, F. K. in Stellar Populations (eds Norman, C. A., Renzini, A. & Tosi, M.) 149–166 (Cambridge Univ., 1987).

    Google Scholar 

  27. VandenBerg, D. A., Bolte, M. & Stetson, P. Astron. J. 100, 445–468 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Carney, B. W., Storm, J. & Jones, R. V. Astrophys. J. 386, 663–684 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Chaboyer, B., Demarque, P. & Sarajedini, A. Astrophys. J. 459, 558–569 (1996).

    Article  ADS  Google Scholar 

  30. Pitts, E. & Tayler, R. J. Mon. Not. R. Astron. Soc. 255, 557–560 (1992).

    Article  ADS  Google Scholar 

  31. Burkert, A., Truran, J. W. & Hensler, G. Astrophys. J. 391, 651–658 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Jacoby, G. H. et al. Publ. Astron. Soc. Pacif. 104, 599–662 (1992).

    Article  ADS  Google Scholar 

  33. Freedman, W. L. et al. Nature 371, 757–762 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Pierce, M. J. et al. Nature 371, 385–388 (1994).

    Article  ADS  Google Scholar 

  35. van den Bergh, S. Publ. Astron. Soc. Pacif. 106, 1113–1119 (1994).

    Article  ADS  Google Scholar 

  36. Probst, R. G. Astrophys. J. Suppl. Ser. 53, 335–350 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Harrington, R. S. et al. Fifth Catalogue of Trigonometric Parallaxes of Faint Stars (US Naval Obs. Publ. No. XXIV-4, Washington, 1978).

    Google Scholar 

  38. Eggen, O. Astrophys. J. Suppl. Ser. 16, 97 (1968).

    Article  ADS  Google Scholar 

  39. Eggen, O. Astrophys. J. Suppl. Ser. 43, 437 (1980).

    Article  Google Scholar 

  40. Schmidt, M. Astrophys. J. 202, 22–29 (1975).

    Article  ADS  Google Scholar 

  41. Felten, J. E. Astrophys. J. 207, 700–709 (1976).

    Article  ADS  Google Scholar 

  42. Liebert, J., Dahn, C. C. & Monet, D. G. in White Dwarfs (ed. Wegner, G.) 15–23 (Springer, Berlin, 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oswalt, T., Smith, J., Wood, M. et al. A lower limit of 9.5 Gyr on the age of the Galactic disk from the oldest white dwarf stars. Nature 382, 692–694 (1996). https://doi.org/10.1038/382692a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382692a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing