Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes

Abstract

EARTH scientists have long recognized1á€-4 that the soluble organic acids excreted by soil biota enhance rates of mineral weathering, thereby chemically stratifying the soil and affecting the biodegradation pathways of organic matter, including pollutants5. Multidentate organic ligands6,7 also exist in industrial waste waters8 and can enhance the mobility of heavy elements, including radionuclides9. Here we examine whether rate coefficients for ligand-promoted disolution of minerals can be predicted from existing studies of dissolved metal complexes. We have performed dissolution experiments on bunsenite (NiO) to compare with published studies of ligand exchange around dissolved Ni(II)á€-ligand complexes10á€-12. The hypothesis is confirmed with surprising detail: the dissolution rate coefficient increases with the number of ligand functional groups coordinated to the surface metal, as do the exchange rate coefficients10á€-12. Furthermore, we find that the dissolution rate coefficients can be predicted from the equilibrium constants for metal complexation in solution, indicating that the activated surface complexes resemble the corresponding dissolved complexes in important ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hilgard, E. W. Soils: their Formation, Properties, Compositions and Relations to Climate and Plant Growth in the Humid and Arid Regions 19 (Macmillan, New York, 1914).

    Google Scholar 

  2. Bloomfield, C. J. Soil Sci. 4, 17–23 (1953).

    Article  CAS  Google Scholar 

  3. Powell, P. E., Cline, G. R., Reid, C. P. P. & Szanislo, P. J. Nature 287, 833–834 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Huang, W. H. & Keller, W. D. Nature 239, 149–151 (1972).

    ADS  CAS  Google Scholar 

  5. Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Nature 370, 128–130 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Muir, J. W., Morrison, R. I., Brown, C. J. & Logan, J. J. Soil Sci. 15, 220–225 (1964).

    Article  CAS  Google Scholar 

  7. Drever, J. I. & Vance, G. F. in Organic Acids in Geological Processes (eds Pittman, E. D. & Lewan, M. D.) 138–161 (Springer, New York, 1993).

    Google Scholar 

  8. Francis, A. J. Experientia 46, 840–850 (1990).

    Article  CAS  Google Scholar 

  9. Means, J. L., Crerar, D. A. & Duguid, J. O. Science 200, 1477–1480 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Wilkens, R. G. Kinetics and Mechanism of Reactions of Transition Metal Complexes, (VCH, New York, 1991).

    Book  Google Scholar 

  11. Rowland, T. V. thesis, University of California at Berkeley (1975).

  12. Margerum, D. W., Cayley, G. R., Weatherburn, D. C. & Pagenkopf, D. K. Kinetics and Mechanisms of Complex Formation and Ligand Exchange. Ch. 1 (ACS Monogr. 174, Am. Chem. Soc. Washington DC, 1978).

    Google Scholar 

  13. Furrer, G. & Stumm, W. Geochim. cosmochim. Acta 50, 1847–1860 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Pohlman, A. A. & McColl, J. C. J. envir. Qual. 14, 86–92 (1986).

    Article  Google Scholar 

  15. Burgess, J. Metal Ions in Solution 333 (Ellis-Horwood, Chichester, 1990).

    Google Scholar 

  16. Martell, A. E. & Smith, R. M. Critical Stability Constants Vols 1–6 (Plenum, New York 1975–89).

    Google Scholar 

  17. Westrich, H. R., Cygan, R. T., Casey, W. H., Zemitis, C. & Arnold, G. W. Am. J. Sci. 293, 869–893 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Kummert, R. & Stumm, W. J. Colloid Interface Sci. 75, 373–385 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Casey, W. H. & Westrich, H. R. Nature 355, 157–159 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Oreskes, N., Shrader-Frechette, K. & Belitz, K. Science 263, 641–646 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Sverjensky, D. Nature 358, 310–313 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, C., Casey, W. & Rock, P. Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature 375, 44–47 (1995). https://doi.org/10.1038/375044a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375044a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing