Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular-level understanding of metal ion retention in clay-rich materials

Abstract

Clay minerals retain or adsorb metal ions in the Earth’s critical zone. Rocks, sediments and soils rich in clay minerals can concentrate rare earth elements (REEs) in ion adsorption-type deposits (IADs) and are similarly effective at metallic contaminant remediation. However, the molecular-scale chemical and physical mechanisms of metal ion retention remain only partly understood. In this Review, we describe the nature, location and energy requirements of metal retention at clay mineral surfaces. Retention originates mainly from electrostatic interactions during cation exchange at low pH and chemical bonding in surface complexation and precipitation at neutral and high pH. Surface complexation can induce surface redox reactions and precipitation mechanisms including neoformation of clay mineral layered structures. In IADs, outer-sphere adsorption is the major retention mechanism of REE ions. By contrast, the use of clay minerals in pollution control relies on various mechanisms that can coexist, including cation exchange, surface complexation and nucleation growth. To more effectively leverage clay mineral–metal interactions in resource recovery and contaminant remediation, complex mechanisms such as surface precipitation and redox reactions must be better understood; for instance, by utilizing advances in quantum mechanical calculations, close combination between synchrotron and simulation techniques, and upscaling of molecular-level information in macroscopic thermokinetic predictive models.

Key points

  • Clay minerals have a diverse array of chemical structures and layer types that lead to a range of metal ion retention mechanisms in Earth’s critical zone. The metal retention capabilities of clay minerals can concentrate rare earth elements (REEs) in ion adsorption-type deposits (IADs) and can also be exploited for metallic industrial waste disposal.

  • Basic metal ion–clay mineral interaction mechanisms include cation exchange, surface complexation, ligand exchange, structural incorporation, surface precipitation (with or without epitaxial growth of neoformed minerals) and precipitation induced by surface redox reactions.

  • Such diversity of retention mechanisms originates from the distinct structures and properties of basal and edge surfaces. Cation exchange on basal surfaces occurs mainly through electrostatics whereas other mechanisms occur through chemical bonding on edge surfaces.

  • REEs in IADs are mainly physically adsorbed on basal surfaces, which are responsible for the high REE extractability (>50%) through ion exchange.

  • Both cation exchange and surface complexation processes occur during the retardation of metallic pollution plumes in waste management applications (radioactive and conventional industrial wastes as well as landfill leachate).

  • Understanding and quantification of the multifaceted and multiscale nature of clay mineral–metal ion interactions necessitate the close combination of experimental and modelling techniques at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clay mineral sheet, layer and particle structures.
Fig. 2: Interaction mechanisms of metal ions with clay minerals.
Fig. 3: Upscaling of information in modelling of radionuclide storage.
Fig. 4: Ion adsorption-type rare earth element deposits.

Similar content being viewed by others

References

  1. Bergaya, F. & Lagaly, G. Handbook of Clay Science 2nd edn (Elsevier, 2013).

  2. Sposito, G., Skipper, N. T., Sutton, R., Park, S. & Soper, A. K. Surface geochemistry of the clay minerals. Proc. Natl Acad. Sci. USA 96, 3358–3364 (1999).

    Article  Google Scholar 

  3. Li, M. Y. H. & Zhou, M.-F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. Am. Min. 105, 92–108 (2020).

    Article  Google Scholar 

  4. Delay, J., Distinguin, M. & Dewonck, S. Characterization of a clay-rich rock through development and installation of specific hydrogeological and diffusion test equipment in deep boreholes. Phys. Chem. Earth 32, 393–407 (2007).

    Article  Google Scholar 

  5. Mishra, H., Karmakar, S., Kumar, R. & Kadambala, P. A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner systems. Environ. Sci. Pollut. Res. 25, 2911–2923 (2018).

    Article  Google Scholar 

  6. Yi, X. et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27, 193–204 (2017).

    Article  Google Scholar 

  7. Brigatti, M. F., Galán, E. & Theng, B. K. G. Chapter 2 — structure and mineralogy of clay minerals. Handb. Clay Sci. 5, 21–81 (2013).

    Article  Google Scholar 

  8. Yuan, G. D., Theng, B. K. G., Churchman, G. J. & Gates, W. P. Chapter 5.1 — clays and clay minerals for pollution control. Handb. Clay Sci. 5, 587–644 (2013).

    Article  Google Scholar 

  9. Altmann, S. Geo’chemical research: a key building block for nuclear waste disposal safety cases. J. Contam. Hydrol. 102, 174–179 (2008).

    Article  Google Scholar 

  10. Skipper, N., Soper, A. & McConnell, J. The structure of interlayer water in vermiculite. J. Chem. Phys. 94, 5751–5760 (1991).

    Article  Google Scholar 

  11. Schlegel, M. L. et al. Cation sorption on the muscovite (0 0 1) surface in chloride solutions using high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta 70, 3549–3565 (2006).

    Article  Google Scholar 

  12. Dähn, R. et al. Neoformation of Ni phyllosilicate upon Ni uptake on montmorillonite: a kinetics study by powder and polarized extended X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta 66, 2335–2347 (2002).

    Article  Google Scholar 

  13. Manceau, A. & Calas, G. Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study. Clay Min. 21, 341–360 (1986).

    Article  Google Scholar 

  14. Churakov, S. V. & Prasianakis, N. I. Review of the current status and challenges for a holistic process-based description of mass transport and mineral reactivity in porous media. Am. J. Sci. 318, 921–948 (2018).

    Article  Google Scholar 

  15. Churakov, S. V. & Gimmi, T. Up-scaling of molecular diffusion coefficients in clays: a two-step approach. J. Phys. Chem. C. 115, 6703–6714 (2011).

    Article  Google Scholar 

  16. Brouwer, E., Baeyens, B., Maes, A. & Cremers, A. Cesium and rubidium ion equilibria in illite clay. J. Phys. Chem. 87, 1213–1219 (1983).

    Article  Google Scholar 

  17. Comans, R. N. J., Haller, M. & De Preter, P. Sorption of cesium on illite: non-equilibrium behaviour and reversibility. Geochim. Cosmochim. Acta 55, 433–440 (1991).

    Article  Google Scholar 

  18. Oscarson, D. W., Hume, H. B. & King, F. Sorption of cesium on compacted bentonite. Clays Clay Miner. 42, 731–736 (1994).

    Article  Google Scholar 

  19. De Koning, A. & Comans, R. N. J. Reversibility of radiocaesium sorption on illite. Geochim. Cosmochim. Acta 68, 2815–2823 (2004).

    Article  Google Scholar 

  20. Poinssot, C., Baeyens, B. & Bradbury, M. H. Experimental studies of Cs, Sr, Ni, and Eu Sorption on Na-illite and the Modelling of Cs Sorption (Paul Scherrer Institut, 1999).

  21. Verburg, K. & Baveye, P. Hysteresis in the binary exchange of cations on 2/1 clay-minerals — a critical-review. Clays Clay Miner. 42, 207–220 (1994).

    Article  Google Scholar 

  22. Bellenger, J. P. & Staunton, S. Adsorption and desorption of Sr-85 and Cs-137 on reference minerals, with and without inorganic and organic surface coatings. J. Environ. Radioact. 99, 831–840 (2008).

    Article  Google Scholar 

  23. Dyer, A., Chow, J. K. & Umar, I. M. The uptake of caesium and strontium radioisotopes onto clays. J. Mater. Chem. 10, 2734–2740 (2000).

    Article  Google Scholar 

  24. Baeyens, B. & Bradbury, M. H. A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: titration and sorption measurements. J. Contam. Hydrol. 27, 199–222 (1997).

    Article  Google Scholar 

  25. Gu, X. & Evans, L. J. Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian illite. J. Colloid Interface Sci. 307, 317–325 (2007).

    Article  Google Scholar 

  26. Bradbury, M. H. & Baeyens, B. Sorption modelling on illite Part I: titration measurements and the sorption of Ni, Co, Eu and Sn. Geochim. Cosmochim. Acta 73, 990–1003 (2009).

    Article  Google Scholar 

  27. Bradbury, M. H. & Baeyens, B. Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim. Cosmochim. Acta 69, 875–892 (2005).

    Article  Google Scholar 

  28. Akafia, M. M., Reich, T. J. & Koretsky, C. M. Assessing Cd, Co, Cu, Ni, and Pb sorption on montmorillonite using surface complexation models. Appl. Geochem. 26, S154–S157 (2011).

    Article  Google Scholar 

  29. Marques Fernandes, M., Scheinost, A. & Baeyens, B. Sorption of trivalent lanthanides and actinides onto montmorillonite: macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites. Water Res. 99, 74–82 (2016).

    Article  Google Scholar 

  30. Bradbury, M. H. & Baeyens, B. Sorption modelling on illite. Part II: actinide sorption and linear free energy relationships. Geochim. Cosmochim. Acta 73, 1004–1013 (2009).

    Article  Google Scholar 

  31. Bradbury, M. H. & Baeyens, B. Experimental measurements and modeling of sorption competition on montmorillonite. Geochim. Cosmochim. Acta 69, 4187–4197 (2005).

    Article  Google Scholar 

  32. Grangeon, S. et al. The influence of natural trace element distribution on the mobility of radionuclides. The exemple of nickel in a clay-rock. Appl. Geochem. 52, 155–173 (2015).

    Article  Google Scholar 

  33. Marques Fernandes, M. & Baeyens, B. Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects. Appl. Geochem. 100, 190–202 (2019).

    Article  Google Scholar 

  34. Gao, Y., Shao, Z. & Xiao, Z. U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature. J. Radioanal. Nucl. Chem. 303, 867–876 (2015).

    Article  Google Scholar 

  35. Uddin, M. K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462 (2017).

    Article  Google Scholar 

  36. Goldberg, S. & Glaubig, R. A. Anion sorption on a calcareous, montmorillonitic soil — selenium. Soil. Sci. Soc. Am. J. 52, 954–958 (1988).

    Article  Google Scholar 

  37. Palmer, D. A. & Meyer, R. E. Adsorption of technetium on selected inorganic ion-exchange materials and on a range of naturally occurring minerals under oxic conditions. J. Inorg. Nucl. Chem. 43, 2979–2984 (1981).

    Article  Google Scholar 

  38. Missana, T., Alonso, U. & Garcıa-Gutiérrez, M. Experimental study and modelling of selenite sorption onto illite and smectite clays. J. Colloid Interface Sci. 334, 132–138 (2009).

    Article  Google Scholar 

  39. Peak, D., Saha, U. & Huang, P. Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic study. Soil Sci. Soc. Am. J. 70, 192–203 (2006).

    Article  Google Scholar 

  40. Ervanne, H., Hakanen, M. & Lehto, J. Selenium sorption on clays in synthetic groundwaters representing crystalline bedrock conditions. J. Radioanal. Nucl. Chem. 307, 1365–1373 (2016).

    Article  Google Scholar 

  41. Goldberg, S. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model. Soil Sci. Soc. Am. J. 77, 64–71 (2013).

    Article  Google Scholar 

  42. Manning, B. A. & Goldberg, S. Adsorption and stability of arsenic(III) at the clay mineral–water interface. Environ. Sci. Technol. 31, 2005–2011 (1997).

    Article  Google Scholar 

  43. Garcia-Sanchez, A., Alvarez-Ayuso, E. & Rodriguez-Martin, F. Sorption of As(V) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils. Clay Miner. 37, 187–194 (2002).

    Article  Google Scholar 

  44. Mohapatra, D., Mishra, D., Chaudhury, G. R. & Das, R. Arsenic (V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 42, 463–469 (2007).

    Article  Google Scholar 

  45. Goldberg, S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66, 413–421 (2002).

    Article  Google Scholar 

  46. Xi, J., He, M. & Lin, C. Adsorption of antimony (III) and antimony (V) on bentonite: kinetics, thermodynamics and anion competition. Microchem. J. 97, 85–91 (2011).

    Article  Google Scholar 

  47. Goldberg, S., Forster, H. & Godfrey, C. Molybdenum adsorption on oxides, clay minerals, and soils. Soil. Sci. Soc. Am. J. 60, 425–432 (1996).

    Article  Google Scholar 

  48. Lee, S. M. & Tiwari, D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Appl. Clay Sci. 59, 84–102 (2012).

    Article  Google Scholar 

  49. Fletcher, P. & Sposito, G. The chemical modeling of clay/electrolyte interactions for montmorillonite. Clay Miner. 24, 375–391 (1989).

    Article  Google Scholar 

  50. Bradbury, M. H. & Baeyens, B. A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part II: modeling. J. Contam. Hydrol. 27, 223–248 (1997).

    Article  Google Scholar 

  51. Loganathan, N. & Kalinichev, A. G. Quantifying the mechanisms of site-specific ion exchange at an inhomogeneously charged surface: case of Cs+/K+ on hydrated muscovite mica. J. Phys. Chem. C 121, 7829–7836 (2017).

    Article  Google Scholar 

  52. Loganathan, N., Yazaydin, A. O., Bowers, G. M., Kalinichev, A. G. & Kirkpatrick, R. J. Structure, energetics, and dynamics of Cs+ and H2O in hectorite: molecular dynamics simulations with an unconstrained substrate surface. J. Phys. Chem. C. 120, 10298–10310 (2016).

    Article  Google Scholar 

  53. Liu, X., Lu, X., Wang, R. & Zhou, H. Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite. Geochim. Cosmochim. Acta 72, 1837–1847 (2008).

    Article  Google Scholar 

  54. Tournassat, C., Grangeon, S., Leroy, P. & Giffaut, E. Modeling specific pH dependent sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent achievements and current challenges. Am. J. Sci. 313, 395–451 (2013).

    Article  Google Scholar 

  55. Thomas, H. C. & Gaines, G. L. J. The thermodynamics of ion exchange on clay minerals. A preliminary report on the system montmorillonite–Cs–Sr. Clays Clay Miner. 2, 398–403 (1953).

    Article  Google Scholar 

  56. Vanselow, A. P. The utilization of the base-exchange reaction for the determination of activity coefficients in mixed electrolytes. J. Am. Chem. Soc. 54, 1307–1311 (1932).

    Article  Google Scholar 

  57. Bourg, I. C. & Sposito, G. Ion Exchange Phenomena (OSTI, 2011).

  58. Tournassat, C. et al. Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals. Soil. Sci. Soc. Am. J. 73, 928–942 (2009).

    Article  Google Scholar 

  59. Lammers, L. N. et al. Molecular dynamics simulations of cesium adsorption on illite nanoparticles. J. Colloid Interface Sci. 490, 608–620 (2016).

    Article  Google Scholar 

  60. Poinssot, C., Baeyens, B. & Bradbury, M. H. Experimental and modelling studies of caesium sorption on illite. Geochim. Cosmochim. Acta 63, 3217–3227 (1999).

    Article  Google Scholar 

  61. Bergaoui, L., Lambert, J. F. & Prost, R. Cesium adsorption on soil clay: macroscopic and spectroscopic measurements. Appl. Clay Sci. 29, 23–29 (2005).

    Article  Google Scholar 

  62. Meleshyn, A. Adsorption of Sr2+ and Ba2+ at the cleaved mica–water interface: free energy profiles and interfacial structure. Geochim. Cosmochim. Acta 74, 1485–1497 (2010).

    Article  Google Scholar 

  63. Bourg, I. C., Lee, S. S., Fenter, P. & Tournassat, C. Stern layer structure and energetics at mica–water interfaces. J. Phys. Chem. C. 121, 9402–9412 (2017).

    Article  Google Scholar 

  64. Zaunbrecher, L. K., Cygan, R. T. & Elliott, W. C. Molecular models of cesium and rubidium adsorption on weathered micaceous minerals. J. Phys. Chem. A 119, 5691–5700 (2015).

    Article  Google Scholar 

  65. Rotenberg, B., Marry, V., Malikova, N. & Turq, P. Molecular simulation of aqueous solutions at clay surfaces. J. Phys. Condens. Matter 22, 284114 (2010).

    Article  Google Scholar 

  66. Tournassat, C., Chapron, Y., Leroy, P. & Boulahya, F. Comparison of molecular dynamics simulations with triple layer and modified Gouy–Chapman models in a 0.1 M NaCl–montmorillonite system. J. Colloid Interface Sci. 339, 533–541 (2009).

    Article  Google Scholar 

  67. Li, X., Liu, N. & Zhang, J. Adsorption of cesium at the external surface of TOT type clay mineral: effect of the interlayer cation and the hydrated state. J. Phys. Chem. C 123, 19540–19548 (2019).

    Article  Google Scholar 

  68. Tournassat, C., Bourg, I. C., Steefel, C. I. & Bergaya, F. Chapter 1 — surface properties of clay minerals. Nat. Engin. Clay Barriers 6, 5–31 (2015).

    Article  Google Scholar 

  69. Liu, L. Prediction of swelling pressures of different types of bentonite in dilute solutions. Colloids Surf. A Physicochem. Eng. Asp. 434, 303–318 (2013).

    Article  Google Scholar 

  70. Van Loon, L. R. & Glaus, M. A. Mechanical compaction of smectite clays increases ion exchange selectivity for cesium. Environ. Sci. Technol. 42, 1600–1604 (2008).

    Article  Google Scholar 

  71. Rotenberg, B., Morel, J.-P., Marry, V., Turq, P. & Morel-Desrosiers, N. On the driving force of cation exchange in clays: insights from combined microcalorimetry experiments and molecular simulation. Geochim. Cosmochim. Acta 73, 4034–4044 (2009).

    Article  Google Scholar 

  72. Teppen, B. J. & Miller, D. M. Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil. Sci. Soc. Am. J. 70, 31–40 (2006).

    Article  Google Scholar 

  73. Cygan, R. T., Greathouse, J. A. & Kalinichev, A. G. Advances in Clayff molecular simulation of layered and nanoporous materials and their aqueous interfaces. J. Phys. Chem. C 125, 17573–17589 (2021).

    Article  Google Scholar 

  74. Le Crom, S., Tournassat, C., Robinet, J.-C. & Marry, V. Influence of polarisability on the prediction of the electrical double layer structure in a clay mesopore: a molecular dynamics study. J. Phys. Chem. C 124, 6221–6232 (2020).

    Article  Google Scholar 

  75. Tesson, S. et al. Classical polarizable force field to study hydrated charged clays and zeolites. J. Phys. Chem. C 122, 24690–24704 (2018).

    Article  Google Scholar 

  76. Churakov, S. V. Mobility of Na and Cs on montmorillonite surface under partially saturated conditions. Environ. Sci. Technol. 47, 9816–9823 (2013).

    Article  Google Scholar 

  77. Simonnin, P., Marry, V., Noetinger, B., Nieto-Draghi, C. & Rotenberg, B. Mineral-and ion-specific effects at clay–water interfaces: structure, diffusion, and hydrodynamics. J. Phys. Chem. C 122, 18484–18492 (2018).

    Article  Google Scholar 

  78. Malikova, N., Dubois, E., Marry, V., Rotenberg, B. & Turq, P. Dynamics in clays — combining neutron scattering and microscopic simulation. Z. Phys. Chem. 224, 153–181 (2010).

    Article  Google Scholar 

  79. Porion, P. et al. 133Cs nuclear magnetic resonance relaxometry as a probe of the mobility of cesium cations confined within dense clay sediments. J. Phys. Chem. C 119, 15360–15372 (2015).

    Article  Google Scholar 

  80. Appelo, C. A. J., Van Loon, L. R. & Wersin, P. Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus clay. Geochim.Cosmochim. Acta 74, 1201–1219 (2010).

    Article  Google Scholar 

  81. Churakov, S. V., Gimmi, T., Unruh, T., Van Loon, L. R. & Juranyi, F. Resolving diffusion in clay minerals at different time scales: combination of experimental and modeling approaches. Appl. Clay Sci. 96, 36–44 (2014).

    Article  Google Scholar 

  82. Tournassat, C. & Steefel, C. I. Reactive transport modeling of coupled processes in nanoporous media. Rev. Mineral. Geochem. 85, 75–110 (2019).

    Article  Google Scholar 

  83. Altmann, S. et al. Diffusion-driven transport in clayrock formations. Appl. Geochem. 27, 463–478 (2012).

    Article  Google Scholar 

  84. Charlet, L., Alt-Epping, P., Wersin, P. & Gilbert, B. Diffusive transport and reaction in clay rocks: a storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue. Adv. Water Resour. 106, 39–59 (2017).

    Article  Google Scholar 

  85. Grambow, B. Geological disposal of radioactive waste in clay. Elements 12, 239–245 (2016).

    Article  Google Scholar 

  86. Whittaker, M. L., Lammers, L. N., Carrero, S., Gilbert, B. & Banfield, J. F. Ion exchange selectivity in clay is controlled by nanoscale chemical–mechanical coupling. Proc. Natl Acad. Sci. USA 116, 22052–22057 (2019).

    Article  Google Scholar 

  87. Liu, X., Cheng, J., Sprik, M., Lu, X. & Wang, R. Interfacial structures and acidity of edge surfaces of ferruginous smectites. Geochim. Cosmochim. Acta 168, 293–301 (2015).

    Article  Google Scholar 

  88. Liu, X., Cheng, J., Sprik, M., Lu, X. & Wang, R. Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations. Geochim.Cosmochim. Acta 140, 410–417 (2014).

    Article  Google Scholar 

  89. Liu, X. et al. Acidity of edge surface sites of montmorillonite and kaolinite. Geochim. Cosmochim. Acta 117, 180–190 (2013).

    Article  Google Scholar 

  90. Genuchten, C. Mvan & Peña, J. Antimonate and arsenate speciation on reactive soil minerals studied by differential pair distribution function analysis. Chem. Geol. 429, 1–9 (2016).

    Article  Google Scholar 

  91. Dähn, R. et al. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study. Geochim. Cosmochim. Acta 37, 1–15 (2003).

    Article  Google Scholar 

  92. Dähn, R., Baeyens, B. & Bradbury, M. H. Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS — the strong/weak site concept in the 2SPNE SC/CE sorption model. Geochim. Cosmochim. Acta 75, 5154–5168 (2011).

    Article  Google Scholar 

  93. Churakov, S. V. & Dähn, R. Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environ. Sci. Technol. 46, 5713–5719 (2012).

    Article  Google Scholar 

  94. Rabung, T. et al. Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta 69, 5393–5402 (2005).

    Article  Google Scholar 

  95. Sasaki, T. et al. Sorption of Eu3+ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling. J. Nucl. Sci. Technol. 53, 592–601 (2016).

    Article  Google Scholar 

  96. Verma, P. K. et al. Eu (III) sorption onto various montmorillonites: experiments and modeling. Appl. Clay Sci. 175, 22–29 (2019).

    Article  Google Scholar 

  97. Zhang, C. et al. Cadmium (II) complexes adsorbed on clay edge surfaces: insight from first principles molecular dynamics simulation. Clays Clay Miner. 64, 337–347 (2016).

    Article  Google Scholar 

  98. Zhang, C. et al. Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni(II). Geochim. Cosmochim. Acta 203, 54–68 (2017).

    Article  Google Scholar 

  99. Tournassat, C., Tinnacher, R. M., Grangeon, S. & Davis, J. A. Modeling uranium (VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential. Geochim. Cosmochim. Acta 220, 291–308 (2018).

    Article  Google Scholar 

  100. Marques Fernandes, M., Baeyens, B., Dähn, R., Scheinost, A. & Bradbury, M. U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study. Geochim. Cosmochim. Acta 93, 262–277 (2012).

    Article  Google Scholar 

  101. Kremleva, A., Martorell, B., Krüger, S. & Rösch, N. Uranyl adsorption on solvated edge surfaces of pyrophyllite: a DFT model study. Phys. Chem. Chem. Phys. 14, 5815–5823 (2012).

    Article  Google Scholar 

  102. Kremleva, A., Krüger, S. & Rösch, N. Uranyl adsorption at solvated edge surfaces of 2:1 smectites. A density functional study. Phys. Chem. Chem. Phys. 17, 13757–13768 (2015).

    Article  Google Scholar 

  103. Kremleva, A., Krüger, S. & Rösch, N. Toward a reliable energetics of adsorption at solvated mineral surfaces: a computational study of uranyl (VI) on 2:1 clay minerals. J. Phys. Chem. C. 120, 324–335 (2016).

    Article  Google Scholar 

  104. Zhang, C., Liu, X., Tinnacher, R. M. & Tournassat, C. Mechanistic understanding of uranyl ion complexation on montmorillonite edges: a combined first-principles molecular dynamics–surface complexation modeling approach. Environ. Sci. Technol. 52, 8501–8509 (2018).

    Article  Google Scholar 

  105. Catalano, J. G. & Brown, G. E. Jr. Uranyl adsorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochim. Cosmochim. Acta 69, 2995–3005 (2005).

    Article  Google Scholar 

  106. Schlegel, M. L. & Descostes, M. Uranium uptake by hectorite and montmorillonite: a solution chemistry and polarized EXAFS study. Environ. Sci. Technol. 43, 8593–8598 (2009).

    Article  Google Scholar 

  107. Ford, R. G. & Sparks, D. L. The nature of Zn precipitates formed in the presence of pyrophyllite. Environ. Sci. Technol. 34, 2479–2483 (2000).

    Article  Google Scholar 

  108. Schlegel, M. L. & Manceau, A. Evidence for the nucleation and epitaxial growth of Zn phyllosilicate on montmorillonite. Geochim. Cosmochim. Acta 70, 901–917 (2006).

    Article  Google Scholar 

  109. Scheidegger, A. M., Lamble, G. M. & Spark, D. L. Spectroscopic evidence for the formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum oxides. J. Colloid Interface Sci. 186, 118–128 (1997).

    Article  Google Scholar 

  110. Siebecker, M., Li, W., Khalid, S. & Sparks, D. Real-time QEXAFS spectroscopy measures rapid precipitate formation at the mineral–water interface. Nat. Commun. 5, 5003 (2014).

    Article  Google Scholar 

  111. Thompson, H. A., Parks, G. A. & BrownJr, G. E. Dynamic interactions of dissolution, surface adsorption, and precipitation in an aging cobalt(II)–clay–water system. Geochim. Cosmochim. Acta 63, 1767–1779 (1999).

    Article  Google Scholar 

  112. Starcher, A. N., Li, W., Kukkadapu, R. K., Elzinga, E. J. & Sparks, D. L. Fe(II) sorption on pyrophyllite: effect of structural Fe (III)(impurity) in pyrophyllite on nature of layered double hydroxide (LDH) secondary mineral formation. Chem. Geol. 439, 152–160 (2016).

    Article  Google Scholar 

  113. Zhu, Y. & Elzinga, E. J. Formation of layered Fe(II)-hydroxides during Fe(II) sorption onto clay and metal-oxide substrates. Environ. Sci. Technol. 48, 4937–4945 (2014).

    Article  Google Scholar 

  114. Zhang, C., Liu, X., Lu, X., Meijer, E. J. & Wang, R. Understanding the heterogeneous nucleation of heavy metal phyllosilicates on clay edges with first-principles molecular dynamics. Environ. Sci. Technol. 53, 13704–13712 (2019).

    Article  Google Scholar 

  115. Jacquat, O., Voegelin, A., Villard, A., Marcus, M. A. & Kretzschmar, R. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils. Geochim. Cosmochim. Acta 72, 5037–5054 (2008).

    Article  Google Scholar 

  116. Choulet, F., Buatier, M., Barbanson, L., Guégan, R. & Ennaciri, A. Zinc-rich clays in supergene non-sulfide zinc deposits. Miner. Depos. 51, 467–490 (2016).

    Article  Google Scholar 

  117. Roqué-Rosell, J., Villanova-de-Benavent, C. & Proenza, J. A. The accumulation of Ni in serpentines and garnierites from the Falcondo Ni-laterite deposit (Dominican Republic) elucidated by means of μXAS. Geochim. Cosmochim. Acta 198, 48–69 (2017).

    Article  Google Scholar 

  118. Balassone, G., Nieto, F., Arfè, G., Boni, M. & Mondillo, N. Zn-clay minerals in the Skorpion Zn nonsulfide deposit (Namibia): identification and genetic clues revealed by HRTEM and AEM study. Appl. Clay Sci. 150, 309–322 (2017).

    Article  Google Scholar 

  119. Chassé, M., Griffin, W. L., O’Reilly, S. Y. & Calas, G. Australian laterites reveal mechanisms governing scandium dynamics in the critical zone. Geochim. Cosmochim. Acta 260, 292–310 (2019).

    Article  Google Scholar 

  120. Stucki, J. W. Chapter 11 — properties and behaviour of iron in clay minerals. Handb. Clay Sci. 5, 559–611 (2013).

    Article  Google Scholar 

  121. Huang, J. et al. Fe(II) redox chemistry in the environment. Chem. Rev. 121, 8161–8233 (2021).

    Article  Google Scholar 

  122. Chakraborty, S. et al. U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ. Sci. Technol. 44, 3779–3785 (2010).

    Article  Google Scholar 

  123. Liger, E., Charlet, L. & Van Cappellen, P. Surface catalysis of uranium (VI) reduction by iron (II). Geochim. Cosmochim. Acta 63, 2939–2955 (1999).

    Article  Google Scholar 

  124. Brookshaw, D. R. et al. Redox interactions of Tc(VII), U(VI), and Np(V) with microbially reduced biotite and chlorite. Environ. Sci. Technol. 49, 13139–13148 (2015).

    Article  Google Scholar 

  125. Begg, J. D., Edelman, C., Zavarin, M. & Kersting, A. B. Sorption kinetics of plutonium (V)/(VI) to three montmorillonite clays. Appl. Geochem. 96, 131–137 (2018).

    Article  Google Scholar 

  126. Hixon, A. E. & Powell, B. A. Plutonium environmental chemistry: mechanisms for the surface-mediated reduction of Pu(V/VI). Environ. Sci. Process. Impacts 20, 1306–1322 (2018).

    Article  Google Scholar 

  127. Charlet, L. et al. Electron transfer at the mineral/water interface: selenium reduction by ferrous iron sorbed on clay. Geochim. Cosmochim. Acta 71, 5731–5749 (2007).

    Article  Google Scholar 

  128. Ilgen, A. G., Kruichak, J. N., Artyushkova, K., Newville, M. G. & Sun, C. Redox transformations of As and Se at the surfaces of natural and synthetic ferric nontronites: role of structural and adsorbed Fe(II). Environ. Sci. Technol. 51, 11105–11114 (2017).

    Article  Google Scholar 

  129. Bishop, M. E., Dong, H., Kukkadapu, R. K., Liu, C. & Edelmann, R. E. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99). Geochim. Cosmochim. Acta 75, 5229–5246 (2011).

    Article  Google Scholar 

  130. Jaisi, D. P. et al. Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chem. Geol. 264, 127–138 (2009).

    Article  Google Scholar 

  131. Qafoku, O. et al. Tc(VII) and Cr(VI) interaction with naturally reduced ferruginous smectite from a redox transition zone. Environ. Sci. Technol. 51, 9042–9052 (2017).

    Article  Google Scholar 

  132. Brigatti, M. F. et al. Reduction and sorption of chromium by Fe(II)-bearing phyllosilicates: chemical treatments and X-ray absorption spectroscopy (XAS) studies. Clays Clay Miner. 48, 272–281 (2000).

    Article  Google Scholar 

  133. Joe-Wong, C., Brown, G. E. Jr & Maher, K. Kinetics and products of chromium (VI) reduction by iron (II/III)-bearing clay minerals. Environ. Sci. Technol. 51, 9817–9825 (2017).

    Article  Google Scholar 

  134. Liao, W. et al. Effect of coexisting Fe (III)(oxyhydr)oxides on Cr(VI) reduction by Fe(II)-bearing clay minerals. Environ. Sci. Technol. 53, 13767–13775 (2019).

    Article  Google Scholar 

  135. Bishop, M. E., Glasser, P., Dong, H., Arey, B. & Kovarik, L. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochim. Cosmochim. Acta 133, 186–203 (2014).

    Article  Google Scholar 

  136. Scheinost, A. C. et al. X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by Fe-II-bearing minerals. J. Contam. Hydrol. 102, 228–245 (2008).

    Article  Google Scholar 

  137. Ilgen, A. G., Foster, A. L. & Trainor, T. P. Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochim. Cosmochim. Acta 94, 128–145 (2012).

    Article  Google Scholar 

  138. Cheng, J. & Sprik, M. Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 14, 11245–11267 (2012).

    Article  Google Scholar 

  139. Blumberger, J. Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115, 11191–11238 (2015).

    Article  Google Scholar 

  140. Cheng, J., Liu, X., Kattirtzi, J. A., VandeVondele, J. & Sprik, M. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2. Angew. Chem. 126, 12242–12246 (2014).

    Article  Google Scholar 

  141. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).

    Article  Google Scholar 

  142. Behler, J., Delley, B., Reuter, K. & Scheffler, M. Nonadiabatic potential-energy surfaces by constrained density-functional theory. Phys. Rev. B 75, 115409 (2007).

    Article  Google Scholar 

  143. Alexandrov, V. & Rosso, K. M. Insights into the mechanism of Fe(II) adsorption and oxidation at Fe–clay mineral surfaces from first-principles calculations. J. Phys. Chem. C. 117, 22880–22886 (2013).

    Article  Google Scholar 

  144. Liu, X., Cheng, J. & Sprik, M. Aqueous transition-metal cations as impurities in a wide gap oxide: the Cu2+/Cu+ and Ag2+/Ag+ redox couples revisited. J. Phys. Chem. B 119, 1152–1163 (2015).

    Article  Google Scholar 

  145. Cheng, J. & VandeVondele, J. Calculation of electrochemical energy levels in water using the random phase approximation and a double hybrid functional. Phys. Rev. Lett. 116, 086402 (2016).

    Article  Google Scholar 

  146. Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M. & Sprik, M. Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc. Chem. Res. 47, 3522–3529 (2014).

    Article  Google Scholar 

  147. Ferrage, E. et al. Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data. J. Phys. Chem. C. 115, 1867–1881 (2011).

    Article  Google Scholar 

  148. Tambach, T. J., Hensen, E. J. M. & Smit, B. Molecular simulations of swelling clay minerals. J. Phys. Chem. B 108, 7586–7596 (2004).

    Article  Google Scholar 

  149. Le Crom, S., Tournassat, C., Robinet, J.-C. & Marry, V. Influence of water saturation level on electrical double layer properties in a clay mineral mesopore: a molecular dynamics study. J. Phys. Chem. C 126, 647–654 (2022).

    Article  Google Scholar 

  150. Savoye, S., Beaucaire, C., Fayette, A., Herbette, M. & Coelho, D. Mobility of cesium through the Callovo-Oxfordian claystones under partially saturated conditions. Environ. Sci. Technol. 46, 2633–2641 (2012).

    Article  Google Scholar 

  151. Huang, B. et al. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: a review. Environ. Sci. Process. Impacts 22, 1596–1615 (2020).

    Article  Google Scholar 

  152. Kleber, M. et al. Mineral–organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 130, 1–140 (2015).

    Article  Google Scholar 

  153. Lagaly, G., Ogawa, M. & Dékény, I. Chapter 10.3 — clay mineral–organic interactions. Handb. Clay Sci. 5, 435–505 (2013).

    Article  Google Scholar 

  154. Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).

    Article  Google Scholar 

  155. Sutton, R. & Sposito, G. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009–9015 (2005).

    Article  Google Scholar 

  156. Piccolo, A. The supramolecular structure of humic substances. Soil. Sci. 166, 810–832 (2001).

    Article  Google Scholar 

  157. Schnitzer, M. A lifetime perspective on the chemistry of soil organic matter. Adv. Agron. 68, 1–58 (1999).

    Article  Google Scholar 

  158. Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions (Wiley, 1994).

  159. Colombo, C. et al. Spontaneous aggregation of humic acid observed with AFM at different pH. Chemosphere 138, 821–828 (2015).

    Article  Google Scholar 

  160. Kelleher, B. P. & Simpson, A. J. Humic substances in soils: are they really chemically distinct? Environ. Sci. Technol. 40, 4605–4611 (2006).

    Article  Google Scholar 

  161. Petrov, D., Tunega, D., Gerzabek, M. H. & Oostenbrink, C. Molecular dynamics simulations of the standard leonardite humic acid: microscopic analysis of the structure and dynamics. Environ. Sci. Technol. 51, 5414–5424 (2017).

    Article  Google Scholar 

  162. Zhang, Y., Liu, X., Zhang, C. & Lu, X. A combined first principles and classical molecular dynamics study of clay-soil organic matters (SOMs) interactions. Geochim. Cosmochim. Acta 291, 110–125 (2020).

    Article  Google Scholar 

  163. Willemsen, J. A., Myneni, S. C. & Bourg, I. C. Molecular dynamics simulations of the adsorption of phthalate esters on smectite clay surfaces. J. Phys. Chem. C. 123, 13624–13636 (2019).

    Article  Google Scholar 

  164. Tournassat, C., Steefel, C., Bourg, I. & Bergaya, F. Natural and Engineered Clay Barriers (Elsevier, 2015).

  165. Gates, W. P., Bouazza, A. & Churchman, G. J. Bentonite clay keeps pollutants at bay. Elements 5, 105–110 (2009).

    Article  Google Scholar 

  166. Otunola, B. O. & Ololade, O. O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ. Technol. Innov. 18, 100692 (2020).

    Article  Google Scholar 

  167. Delage, P., Cui, Y.-J. & Tang, A. M. Clays in radioactive waste disposal. J. Rock. Mech. Geotech. Eng. 2, 111–123 (2010).

    Article  Google Scholar 

  168. Mukherjee, S. in The Science of Clays Ch. 21 309–325 (Springer, 2013).

  169. Sellin, P. & Leupin, O. X. The use of clay as an engineered barrier in radioactive-waste management — a review. Clays Clay Miner. 61, 477–498 (2013).

    Article  Google Scholar 

  170. Wypych, F., Bergaya, F. & Schoonheydt, R. A. From polymers to clay polymer nanocomposites. Dev. Clay Sci. 9, 331–359 (2018).

    Article  Google Scholar 

  171. Bergaya, F. & Lagaly, G. Chapter 10.0 — introduction on modified clays and clay minerals. Handb. Clay Sci. 5, 383 (2013).

    Article  Google Scholar 

  172. Vicente, M. A., Gil, A. & Bergaya, F. Chapter 10.5 — pillared clays and clay minerals. Handb. Clay Sci. 5, 523–557 (2013).

    Article  Google Scholar 

  173. Dutta, D. K. Clay mineral catalysts. Dev. Clay Sci. 9, 289–329 (2018).

    Article  Google Scholar 

  174. Bhowmick, S. et al. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chem. Eng. J. 243, 14–23 (2014).

    Article  Google Scholar 

  175. Han, H. et al. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J. Hazard. Mater. 369, 780–796 (2019).

    Article  Google Scholar 

  176. Yadav, V. B., Gadi, R. & Kalra, S. Clay based nanocomposites for removal of heavy metals from water: a review. J. Environ. Manage. 232, 803–817 (2019).

    Article  Google Scholar 

  177. Zhang, T. et al. Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-composites. Chem. Eng. J. 420, 127574 (2020).

    Article  Google Scholar 

  178. Buruga, K. et al. A review on functional polymer-clay based nanocomposite membranes for treatment of water. J. Hazard. Mater. 379, 120584 (2019).

    Article  Google Scholar 

  179. Jlassi, K., Chehimi, M. M. & Thomas, S. Clay–Polymer Nanocomposites (Elsevier, 2017).

  180. Payne, T. E. et al. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal. Environ. Model. Softw. 42, 143–156 (2013).

    Article  Google Scholar 

  181. Caporale, A. G. & Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2, 15–27 (2016).

    Article  Google Scholar 

  182. Manceau, A. et al. Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am. J. Sci. 300, 289–343 (2000).

    Article  Google Scholar 

  183. Appelo, C. A. J., Vinsot, A., Mettler, S. & Wechner, S. Obtaining the porewater composition of a clay rock by modeling the in- and out-diffusion of anions and cations from an in-situ experiment. J. Contam. Hydrol. 101, 67–76 (2008).

    Article  Google Scholar 

  184. Appelo, C. A. J. & Wersin, P. Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus clay. Environ. Sci. Technol. 41, 5002–5007 (2007).

    Article  Google Scholar 

  185. Soler, J. M., Steefel, C. I., Gimmi, T., Leupin, O. X. & Cloet, V. Modeling the ionic strength effect on diffusion in clay. The DR-A experiment at Mont Terri. ACS Earth Space Chem. 3, 442–451 (2019).

    Article  Google Scholar 

  186. Gimmi, T. & Kosakowski, G. How mobile are sorbed cations in clays and clay rocks? Environ. Sci. Technol. 45, 1443–1449 (2011).

    Article  Google Scholar 

  187. Glaus, M. et al. Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite. Geochim. Cosmochim. Acta 165, 376–388 (2015).

    Article  Google Scholar 

  188. Glaus, M., Frick, S., & Van Loon, L. A coherent approach for cation surface diffusion in clay minerals and cation sorption models: diffusion of Cs+ and Eu3+ in compacted illite as case examples. Geochim. Cosmochim. Acta 274, 79–96 (2020).

    Article  Google Scholar 

  189. Moldoveanu, G. & Papangelakis, V. An overview of rare-earth recovery by ion-exchange leaching from ion-adsorption clays of various origins. Mineral. Mag. 80, 63–76 (2016).

    Article  Google Scholar 

  190. Sanematsu, K., Kon, Y., Imai, A., Watanabe, K. & Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner Deposita 48, 437–451 (2013).

    Article  Google Scholar 

  191. Li, M. Y. H., Zhou, M.-F. & Williams-Jones, A. E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi Province, South China. Econ. Geol. 114, 541–568 (2019).

    Article  Google Scholar 

  192. Borst, A. M. et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 11, 4386 (2020).

    Article  Google Scholar 

  193. Chi, R., Tian, J. Weathered Crust Elution-Deposited Rare Earth Ores (Nova Science, 2008).

  194. Li, Y. H. M., Zhao, W. W. & Zhou, M.-F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model. J. Asian Earth Sci. 148, 65–95 (2017).

    Article  Google Scholar 

  195. Goodenough, K. M., Wall, F. & Merriman, D. The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 27, 201–216 (2018).

    Article  Google Scholar 

  196. Jordens, A., Cheng, Y. P. & Waters, K. E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114 (2013).

    Article  Google Scholar 

  197. Berger, A., Janots, E., Gnos, E., Frei, R. & Bernier, F. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Appl. Geochem. 41, 218–228 (2014).

    Article  Google Scholar 

  198. Bern, C. R., Yesavage, T. & Foley, N. K. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration. J. Geochem. Explor. 172, 29–40 (2017).

    Article  Google Scholar 

  199. Sanematsu, K. & Watanabe, Y. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geol. Rev. 135, 104173 (2016).

    Google Scholar 

  200. Yamaguchi, A., Honda, T., Tanaka, M., Tanaka, K. & Takahashi, Y. Discovery of ion-adsorption type deposits of rare earth elements (REE) in southwest Japan with speciation of REE by extended X-ray absorption fine structure spectroscopy. Geochem. J. 52, 415–425 (2018).

    Article  Google Scholar 

  201. Braun, J.-J. et al. Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta 54, 781–795 (1990).

    Article  Google Scholar 

  202. Takahashi, Y., Shimizu, H., Usui, A., Kagi, H. & Nomura, M. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochim. Cosmochim. Acta 64, 2929–2935 (2000).

    Article  Google Scholar 

  203. Moldoveanu, G. A. & Papangelakis, V. G. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 117, 71–78 (2012).

    Article  Google Scholar 

  204. Jones, D. J., Rozière, J., Olivera-Pastor, P., Rodrıguez-Castellòn, E. & Jimènez-Lòpez, A. Local environment of intercalated lanthanide ions in vermiculite. J. Chem. Soc. Faraday Trans. 87, 3077–3081 (1991).

    Article  Google Scholar 

  205. Takahashi, Y., Kimura, T., Kato, Y., Minai, Y. & Tominaga, T. Characterization of Eu(III) species sorbed on silica and montmorillonite by laser-induced fluorescence spectroscopy. Radiochim. Acta 82, 227–232 (1998).

    Article  Google Scholar 

  206. Stumpf, T., Bauer, A., Coppin, F., Fanghänel, T. & Kim, J.-I. Inner-sphere, outer-sphere and ternary surface complexes: a TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite. Radiochim. Acta 90, 345–349 (2002).

    Article  Google Scholar 

  207. Mukai, H., Kon, Y., Sanematsu, K., Takahashi, Y. & Ito, M. Microscopic analyses of weathered granite in ion-adsorption rare earth deposit of Jianxi Province, China. Sci. Rep. 10, 1–11 (2020).

    Article  Google Scholar 

  208. Velde, B. B. & Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks (Springer, 2008).

  209. Nagasawa, M., Qin, H.-B., Yamaguchi, A. & Takahashi, Y. Local structure of rare earth elements (REE) in marine ferromanganese oxides by extended X-ray absorption fine structure and its comparison with REE in ion-adsorption type deposits. Chem. Lett. 49, 909–911 (2020).

    Article  Google Scholar 

  210. Ohta, A., Kagi, H., Tsuno, H., Nomura, M. & Kawabe, I. Influence of multi-electron excitation on EXAFS spectroscopy of trivalent rare-earth ions and elucidation of change in hydration number through the series. Am. Mineral. 93, 1384–1392 (2008).

    Article  Google Scholar 

  211. Stumpf, S. et al. Sorption of Am(III) onto 6-line-ferrihydrite and its alteration products: investigations by EXAFS. Environ. Sci. Technol. 40, 3522–3528 (2006).

    Article  Google Scholar 

  212. Ohta, A., Kagi, H., Nomura, M., Tsuno, H. & Kawabe, I. Coordination study of rare earth elements on Fe oxyhydroxide and Mn dioxides: part II. Correspondence of structural change to irregular variations of partitioning coefficients and tetrad effect variations appearing in interatomic distances. Am. Mineral. 94, 476–486 (2009).

    Article  Google Scholar 

  213. Kashiwabara, T. et al. Synchrotron X-ray spectroscopic perspective on the formation mechanism of REY-rich muds in the Pacific Ocean. Geochim. Cosmochim. Acta 240, 274–292 (2018).

    Article  Google Scholar 

  214. Butt, C. R. & Cluzel, D. Nickel laterite ore deposits: weathered serpentinites. Elements 9, 123–128 (2013).

    Article  Google Scholar 

  215. Bergaya, F. & Lagaly, G. Chapter 1 — general introduction: clays, clay minerals, and clay science. Handb. Clay Sci. A. Fund. 5, 1–19 (2013).

    Google Scholar 

  216. Schoonheydt, R. A., Johnston, C. T. & Bergaya, F. Clay minerals and their surfaces. Dev. Clay Sci. 9, 1–21 (2018).

    Article  Google Scholar 

  217. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  218. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  219. Marx, D. & Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge Univ. Press, 2009).

  220. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic, 2002).

  221. Liu, X., Tournassat, C. & Steefel, C. I. Preface to multiscale simulation in geochemistry. Geochim. Cosmochim. Acta 291, 1–4 (2020).

    Article  Google Scholar 

  222. Sposito, G. The Surface chemistry of Natural Particles Vol. 242 (Oxford Univ. Press, 2004).

  223. Steefel, C. I. et al. Reactive transport codes for subsurface environmental simulation. Comp. Geosci. 19, 445–478 (2015).

    Article  Google Scholar 

  224. Steefel, C. I. Reactive transport at the crossroads. Rev. Mineral. Geochem. 85, 1–26 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

X.L. was supported by the National Natural Science Foundation of China (Nos. 42125202 and 41872041). C.T., S.G. and M.M.F. acknowledge funding from the EC Horizon 2020 project European Joint Programme on Radioactive Waste Management (EURAD) under Grant Agreement 847593 (WP FUTURE). Research by C.T. at Lawrence Berkeley National Laboratory (LBNL) was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, through its Geoscience programme at LBNL under Contract DE-AC02-05CH11231. C.T. acknowledges a grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ Programme LabEx VOLTAIRE, 10-LABX-0100 at Institut des Sciences de la Terre d’Orléans (ISTO). S.G. acknowledges partial funding by an in-house BRGM grant. A.G.K.acknowledges the financial support of the industrial chair ‘Storage and Disposal of Radioactive Waste’ at the IMT-Atlantique, funded by ANDRA,Orano and EDF.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and C.T. were responsible for the design and compilation of the article. All authors contributed to the writing and editing.

Corresponding authors

Correspondence to Xiandong Liu or Christophe Tournassat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks J. Kubicki, B. Sarkar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Clay minerals

A class of hydrated phyllosilicates making up the fine-grained fraction of rocks, sediments and soils.

Metal ions

Metal cations (M) in aqueous solution with the chemical formula [M(H2O)n]z+, metal ions include rare earth elements (REEs), actinides, transition metals, and alkaline and alkaline earth metals.

Earth’s critical zone

The thin layer at Earth’s surface and shallow subsurface, spanning from the canopy to the bottom of groundwater, where soil, water, air and the living interact.

Clay-rich materials

Materials containing clay minerals, such as sediments, soils and weathered rocks, and with physical and chemical properties dominated by their clay mineral fraction.

Complex

A compound consisting of a central atom or ion that is bonded to other atoms or ions, which are called ligands.

Octahedral sheet

A 2D sheet formed by octahedral units, each consisting of a metal cation coordinated by six oxygen atoms, linked to six neighbouring octahedra by shared edges.

Tetrahedral sheets

2D sheets formed by tetrahedral units, each consisting of a metal cation coordinated by four oxygen atoms and linked to three neighbouring tetrahedra by shared oxygen.

2:1 Layers

Structural clay mineral layers made of one octahedral sheet sandwiched by two tetrahedral sheets.

Epitaxial nucleation

The formation of a crystalline nucleus on a substrate, where the new crystalline phase forms with one or more well-defined crystallographic orientations fixed by that of the substrate lattice.

Neutron diffraction

An experimental technique used to probe the crystallographic properties of materials, including the position of hydrogen atoms, notably by taking advantage of the contrasting interactions of neutrons with hydrogen and deuterium.

Synchrotron X-ray reflectivity

An experimental technique used to study the detailed surface properties of solids, based on the analysis of X-rays reflected by a surface.

X-ray absorption spectroscopy

An experimental technique used to study the oxidation state and local environment of an atom in a sample, based on analysis of variations in X-ray absorption over a range of photon energies.

Smectite

A group of 2:1-type clay minerals with expandable interlayer space

Illite

A group of 2:1-type clay minerals with non-expandable interlayer space.

Inner-sphere complex

A complex where the cation is adsorbed on a clay layer with direct chemical contact to the mineral layer surface.

Outer-sphere complexes

Complexes where the cation is adsorbed on a clay layer surface, but is separated by one or more water molecules.

Ligand exchange

A type of reaction in which a ligand of a complex is replaced by a different ligand.

Dioctahedral

A common type of octahedral sheet where most of the metal cations are of +3 valence; two-thirds of the octahedra are occupied whereas the other third is vacant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tournassat, C., Grangeon, S. et al. Molecular-level understanding of metal ion retention in clay-rich materials. Nat Rev Earth Environ 3, 461–476 (2022). https://doi.org/10.1038/s43017-022-00301-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00301-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing