Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Charge-transfer states in dense hydrogenCharge-transfer states in dense hydrogen

Abstract

THE electronic properties of hydrogen, from the gas phase to the solid state, are fundamental to our understanding of the chemical bond1. The strong covalent bond of diatomic hydrogen persists in low-density condensed phases, where the molecules interact very weakly through van der Waals forces2. At very high densities, molecular bonding has long been predicted to give way to a mon-atomic and presumably metallic lattice3. At intermediate densities, intermolecular interactions are expected to increase; however, the relative strengths of the intermolecular and intramolecular interactions, and their effect on physical and chemical properties, have received comparatively little attention theoretically. Recent diamond-anvil-cell studies have revealed a range of unexpected phenomena in solid hydrogen at these densities4. Here we show that marked changes in the infrared and Raman spectra of the intramolecular stretching modes (vibrons)5 with increasing pressure can be interpreted in a manner analogous to the behaviour of organic charge-transfer salts at ambient pressure, including those exhibiting pressure-induced neutral-to-ionic transitions6,7. Increased molecular overlap in dense hydrogen leads to symmetry breaking, which makes possible charge-transfer states between adjacent H2 molecules. The consequent changes in bond strength and in vibron frequencies are evident in the spectra. These findings present a new picture of dense hydrogen and highlight the advantages of a localized, 'chemical' description of the bonding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heitler, H. & London, F. Z. Phys. 44, 455–472 (1927).

    Article  CAS  Google Scholar 

  2. van Kranendonk, J. Solid Hydrogen (Plenum, New York, 1983).

    Book  Google Scholar 

  3. Wigner, E. & Huntington, H. B. J. chem. Phys. 3, 764–770 (1935).

    Article  ADS  CAS  Google Scholar 

  4. Mao, H. K. & Hemley, R. J. Rev. mod. Phys. 66, 671–692 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Hanfland, M., Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 70, 3760–3763 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Takaoka, Y. et al. Phys. Rev. B36, 3884–3887 (1987).

    Article  CAS  Google Scholar 

  7. Hanfland, M., Brillante, A., Girlando, A. & Syassen, K. Phys. Rev. B38, 1456–1461 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Ashcroft, N. W. in Frontiers of High-Pressure Research (eds Hochheimer, H. D. & Etters, R. D.) 115–129 (Plenum, New York, 1991).

    Book  Google Scholar 

  9. Garcia, A., Barbee, T. W., Cohen, M. L. & Silvera, I. F. Europhys. Lett. 13, 355–360 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Chacham, H. & Louie, S. G. Phys. Rev. Lett. 66, 64–67 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Kaxiras, E., Broughton, J. & Hemley, R. J. Phys. Rev. Lett. 67, 1138–1141 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Nagara, H. & Nakamura, T. Phys. Rev. Lett. 68, 2468–2471 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Surh, M. P., Barbee, T. W. & Mailhiot, C. Phys. Rev. Lett. 70, 4090–4093 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Hohl, D., Natoli, V., Ceperley, D. M. & Martin, R. M. Phys. Rev. Lett. 71, 541–544 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Hemley, R. J., Hanfland, M. & Mao, H. K. Nature 350, 488–491 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Eggert, J. H. et al. Phys. Rev. Lett. 66, 193–196 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Sharma, S. K., Mao, H. K. & Bell, P. M. Phys. Rev. Lett. 44, 886–888 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Hanfland, M., Hemley, R. J., Mao, H. K. & Williams, G. P. Phys. Rev. Lett. 69, 1129–1132 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 61, 857–860 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Lorenzana, H. E., Silvera, I. F. & Goettel, K. A. Phys. Rev. Lett. 63, 2080–2083 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Kauzmann, W. Quantum Chemistry 568–583 (Academic, New York, 1957).

    MATH  Google Scholar 

  22. Mao, H. K., Xu, J. & Bell, P. M. in High Pressure in Science and Technology (eds Homan, C., MacCrone, R. K. & Whalley, E.) 327–331 (North-Holland, New York, 1984).

    Google Scholar 

  23. Zallen, R. Phys. Rev. 173, 824–832 (1968).

    Article  ADS  CAS  Google Scholar 

  24. Loubeyre, P., LeToullec, R. & Pinceaux, J. P. Phys. Rev. B45, 12844–12853 (1992).

    Article  CAS  Google Scholar 

  25. Baranowski, B. Polish, J. Chem. 66, 1637–1640 (1992).

    Google Scholar 

  26. Bozio, R. & Pecile, C. in Spectroscopy of Advanced Materials (eds Clark, R. J. H. & Hester, R. E.) 1–86 (Wiley, New York, 1991).

    Google Scholar 

  27. Soos, Z. G. & Klein, D. J. in Molecular Association (ed Foster, R.) 1–109 (Academic, London, 1975).

    Google Scholar 

  28. Rice, M. J. Solid St. Commun. 31, 93–98 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Hemley, R. J. et al. Phys. Rev. B42, 6458–6470 (1990).

    Article  CAS  Google Scholar 

  30. Painelli, A. & Girlando, A. J. chem. Phys. 84, 5655–5671 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Ree, F. H. & Bender, C. F. J. chem. Phys. 71, 5362–5375 (1979).

    Article  ADS  CAS  Google Scholar 

  32. Hemley, R. J. et al. in Strongly Coupled Plasma Physics (eds Van Horn, H. M. & Ichimaru, S.) 3–10 (Univ. Rochester Press, Rochester, New York, 1993).

    Google Scholar 

  33. Amaya-Tapia, A., Cisneros, C. & Russek, A. Phys. Rev. A34, 2591–2598 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Mele, E. J. in Handbook of Conducting Polymers (ed. Skotheim, T.) 795 (Dekker, New York, 1986).

    Google Scholar 

  35. Soos, Z. G., Eggert, J. H., Hemley, R. J., Hanfland, M. & Mao, H. K. J. chem. Phys. (submitted).

  36. Janssen, W. B. L. M. & van der Avoird, A. Phys. Rev. B42, 838–848 (1990).

    Article  ADS  CAS  Google Scholar 

  37. Maddox, J. Nature 364, 483 (1993).

    Article  ADS  Google Scholar 

  38. Hemley, R. J., Mao, H. K. & Shu, J. F. Phys. Rev. Lett. 65, 2670–2673 (1990).

    Article  ADS  CAS  Google Scholar 

  39. Lipp, M. J. & Daniels, W. B. Phys. Rev. Lett. 67, 2810–2813 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemley, R., Soos, Z., Hanfland, M. et al. Charge-transfer states in dense hydrogenCharge-transfer states in dense hydrogen. Nature 369, 384–387 (1994). https://doi.org/10.1038/369384a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369384a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing