Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pulsar motion effect and Geminga's high braking index

Abstract

THE pulsar braking index, n, is a dimensionless quantity describing the rate at which a magnetized neutron star loses rotational energy1. It can be determined from pulsar timing measurements, and for distant pulsars is found to lie close to n = 3 (ref. 2), as predicted by theoretical models of pulsar emission mechanisms3–5. In contrast, the timing parameters—in particular the second derivative of the pulsation frequency—of the nearby pulsar Geminga6–11 indicate an extremely large braking index of about 10-30. To understand this property of Geminga, we consider here the effect on the measured timing parameters of a pulsar's motion through space. We find that the Doppler effect alone can give a high apparent braking index, but only if the pulsar is very close and has an abnormally high velocity (>1000kms-1). A more likely (but related) cause of the high braking index is the pulsar's proper motion: failure to correct for changes in the source coordinates with time can greatly influence the higher derivatives of the pulsar frequency, and lead to an erroneous value of n. A self-consistent analysis of the timing data, which account for both the proper motion and the Doppler effect, should permit a reliable estimate of the distance to Geminga.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manchester, R. N. & Taylor, J. H. Pulsars (Freeman, San Francisco, 1977).

    Google Scholar 

  2. Manchester, R. N., Durdin, J. M., & Newton, L. M. Nature 313, 374–376 (1985).

    Article  ADS  Google Scholar 

  3. Pacini, F. Nature 216, 567–568 (1967).

    Article  ADS  Google Scholar 

  4. Gunn, H. E. & Ostriker, J. P. Nature 221, 454–455 (1969).

    Article  ADS  Google Scholar 

  5. Goldreich, P. & Julian, W. H. Astrophys. J. 157, 869–875 (1969).

    Article  ADS  Google Scholar 

  6. Halpern, J. P. & Holt, S. S. Nature 357, 222–223 (1992).

    Article  ADS  Google Scholar 

  7. Bertsch, D. L. et al. Nature 357, 306–307 (1992).

    Article  ADS  Google Scholar 

  8. Bignami, F. G. & Caraveo, P. A. Nature 357, 287 (1992).

    Article  ADS  Google Scholar 

  9. Mattox, J. R. et al. IAU Circ. No. 5583.

  10. Mayer-Hasselwander, H. A. et al. IAU Circ. No. 5649.

  11. Hermsen, W. et al. IAU Circ. No. 5541.

  12. Shklovskij, I. S. Astr. Zh. 46, 715–719 (1969).

    ADS  Google Scholar 

  13. Bisnovatyi-Kogan, G. S. & Moiseenko, S. G. Astr. Zh. 69, 563–571 (1992).

    ADS  Google Scholar 

  14. Bisnovatyi-Kogan, G. S. Astr. Astrophys. Trans. 4, 287–294 (1993).

    Article  ADS  Google Scholar 

  15. Frail, D. A. & Kulkarni, S. R. Nature 352, 785–787 (1991).

    Article  ADS  Google Scholar 

  16. Harrison, P. A., Lyne, A. G. & Anderson, B. in Proc. NATO-ARW, X-ray Binaries and Recycled Pulsars (eds Van den Heuvel, E. & Rappaport, S.) 155–160 (Kluwer, Dordrecht, 1992).

    Book  Google Scholar 

  17. Cordes, J. M., Romani, R. W. & Lundgren, S. C. Cornell Univ. preprint Dec. 1992.

  18. Bignami, G. F., Caraveo, P. A., Paul, J. A., Salotti, L. & Vigroux, L. Astrophys. J. 319, 358–364 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Halpern, J. P. & Tytler, D. Astrophys. J. 330, 201–220 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Bignami, G. F., Caraveo, P. A. & Mereghetti, S. Nature 361, 704–707 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisnovatyi-Kogan, G., Postnov, K. Pulsar motion effect and Geminga's high braking index. Nature 366, 663–665 (1993). https://doi.org/10.1038/366663a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366663a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing