Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence segregation in molten liquid-crystalline random copolymers

Abstract

THE polymerization of two or more types of monomer to form random copolymer molecules yields commercially important thermotropic liquid-crystalline polymeric materials1. The limited degree of crystallization observed for these random copolymers is thought to occur through a process of segregation: random but similar sequences of the different monomer units on adjacent chains come into register to form a layered structure with crystalline periodicity perpendicular to the chain axes but with aperiodicity parallel to the chains, giving 'non-periodic layer' crystals2,3. If, as has been believed, the melt is a nematic liquid crystal , the question of how the necessary large-scale molecular rearrangements can occur even when crystallization is rapid is puzzling. Here we report the results of a wide-angle X-ray scattering study of a series of oriented molten samples of a class of these materials known as B–N random copolymers, which show that segregated, layered structures are already present in the melt. In other words, the melt contains smectic-type regions within a nematic matrix. The presence of these regions of sequence matching opens up the possibility of controlling the microstructure, and thus the properties, of thermoplastics through the introduction of specifically synthesized non-random sequences into the molecular chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Griffin, B. P. & Cox, M. K. Br. Polym. J. 12, 147–153 (1980).

    Article  CAS  Google Scholar 

  2. Windle, A. H., Viney, C., Golombok, R., Donald, A. M. & Mitchell, G. R. Faraday Discuss. chem. Soc. 79, 55–78 (1985).

    Article  CAS  Google Scholar 

  3. Hanna, S. & Windle, A. H. Polymer 29, 207–223 (1988).

    Article  CAS  Google Scholar 

  4. Blundell, D. J. Polymer 23, 359–364 (1982).

    Article  CAS  Google Scholar 

  5. Coulter, P. D., Hanna, S. & Windle, A. H. Liq. Cryst. 5, 1603–1618 (1989).

    Article  CAS  Google Scholar 

  6. Yoon, D. Y., Masciocchi, N., Depero, L. E., Viney, C. & Parrish, W. Macromolecules 23, 1793–1799 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Schwarz, G. & Kricheldorf, H. R. Macromolecules 24, 2829–2833 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Hanna, S. & Windle, A. H. Polymer 33, 2825–2833 (1992).

    Article  CAS  Google Scholar 

  9. Gutierrez, G. A., Chivers, R. A., Blackwell, J., Stamatoff, J. B. & Yoon, H. Polymer 24, 937–942 (1983).

    Article  CAS  Google Scholar 

  10. Mitchell, G. R. & Windle, A. H. Colloid Polym. Sci. 263, 230–244 (1985).

    Article  CAS  Google Scholar 

  11. Blackwell, J., Gutierrez, G. A. & Chivers, R. A. Macromolecules 17, 1219–1224 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Blackwell, J., Gutierrez, G. A., Chivers, R. A. & Ruland W. J. Polym. Sci. Polym. Phys. edn 22, 1343–1347 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Vainshtein, B. K. Diffraction of X-rays by Chain Molecules Section Vl.4 (Elsevier, Amsterdam, 1966).

    Google Scholar 

  14. Golombok, R., Hanna, S. & Windle, A. H. Molec. Cryst. liq. Cryst. 155, 281–297 (1988).

    CAS  Google Scholar 

  15. Leadbetter, A. J. in Thermotropic Liquid Crystals, Critical Reports on Applied Chem. Vol.22 (ed. Gray, G. W.) Ch. 1 (Wiley, Chichester, 1987).

  16. MacDonald, W. A., McLenaghan A.D.W., McLean, G., Richards, R. W. & King, S. M. Macromolecules 24, 6164–6167 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Mühlebach, A., Economy, J., Johnson, R. D., Karis, T. & Lyerla, J. Macromolecules 23, 1803–1809 (1990).

    Article  ADS  Google Scholar 

  18. Jin, J.-I., Chang, J.-H., Hatada, K., Ute, K. & Hotta, M. Polymer 33, 1374–1378 (1992).

    Article  CAS  Google Scholar 

  19. Miley, D. M. & Runt, J. Polymer 33, 4643–4646 (1992).

    Article  CAS  Google Scholar 

  20. Benoît, H. C., Fischer, E. W. & Zachmann, H. G. Polymer 30, 379–385 (1989).

    Article  Google Scholar 

  21. Rafalko, J. J., Borzo, M., Choe, E. W. & Jaffe, M. Polymer. Preprints 34(1), 770–771 (1993).

    CAS  Google Scholar 

  22. Anwer, A. & Windle, A. H. Polymer 34, 3347–3357 (1993).

    Article  CAS  Google Scholar 

  23. Hudson, S. D. & Lovinger A. J. Polymer 34, 1123–1129 (1993).

    Article  CAS  Google Scholar 

  24. Nicholson, T. M., Mackley, M. R., Gervat, L. & Windle, A. H. Proc. R. Soc. (in the press).

  25. Butzbach, G. D., Wendorff, J. H. & Zimmermann, H. J. Polymer 27, 1337–1344 (1986).

    Article  CAS  Google Scholar 

  26. Hanna, S., Lemmon, T. J. & Windle, A. H. in Polymer Science, Contemporary Themes (ed. Sivaram, S.) 504–509 (Tata McGraw-Hill, New Delhi, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanna, S., Romo-Uribe, A. & Windle, A. Sequence segregation in molten liquid-crystalline random copolymers. Nature 366, 546–549 (1993). https://doi.org/10.1038/366546a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366546a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing