Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems

Abstract

HERBIVORES can consume a sufficiently large proportion of primary production to regulate plant biomass in some environments1–3. Little is known, however, about how rates of herbivory vary among ecosystems and how herbivores influence the global distribution of vegetation. Patterns of herbivory in terrestrial ecosystems have been summarized recently4,5, but comparisons with aquatic systems are uncertain because past generalizations about herbivory in aquatic systems are based on surprisingly few data6–8. Herbivory is thought to be higher in aquatic than in terrestrial ecosystems9–11 and the impact of herbivores in aquatic systems is believed to decrease with increasing primary productivity12–15, a pattern opposite to that in terrestrial systems4,5. Here we examine these hypotheses using data from 44 aquatic sites. Herbivore biomass and herbivory rates increase at similar rates with increasing primary productivity in aquatic and in terrestrial systems. For a given level of primary productivity, aquatic and terrestrial herbivores reach similar biomass, but aquatic herbivores remove on average 51% of annual primary production, three times more than terrestrial herbivores. Mass-specific rates of herbivory are greater in aquatic than in terrestrial systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Power, M. E., Stewart, A. J. & Matthews, W. J. Ecology 69, 1894–1898 (1988).

    Article  Google Scholar 

  2. Feminella, J. W. & Resh, V. H. Holarctic Ecol. 12, 1–8 (1989).

    Google Scholar 

  3. Keats, D. W., South, G. R. & D. H., Steele, Mar. Ecol. Prog. Ser. 68, 181–193 (1990).

    Article  ADS  Google Scholar 

  4. McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Nature 341, 142–144 (1989).

    Article  ADS  CAS  Google Scholar 

  5. McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. in Comparative Analyses of Ecosystems (eds Cole, J., Lovett, G. & Findlay, S.) 120–139 (Springer, New York, 1991).

    Book  Google Scholar 

  6. Wiegert, R. G. & Owen, D. F. J. theor. Biol. 30, 69–81 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Whittaker, R. H. & Likens G. E. in Carbon and the Biosphere (eds Woodwell, G. M. & Pecan, E. V.) 281–300 (Proc. 24th Brookhaven Symp. Biol., US Atomic Energy Commission, 1973).

    Google Scholar 

  8. Pimentel, D., Levin, S. A. & Soans, A. B. Ecology 56, 381–390 (1975).

    Article  Google Scholar 

  9. Whittaker, R. H. Communities and Ecosystems 2nd edn (Macmillan, New York, 1975).

    Google Scholar 

  10. Valiela, I. Marine Ecological Processes (Springer, New York, 1984).

    Book  Google Scholar 

  11. Ricklefs, R. Ecology. 3rd edn (Freeman, New York, 1990).

    Google Scholar 

  12. Gliwicz, Z. M. & Hillbricht-llkowska, A. Verh. int. Verein. theor. angew. Limnol. 18, 197–203 (1972).

    Google Scholar 

  13. Eppley, R. W. in Analysis of Marine Ecosystems (ed. Longhurst, A. R.) 343–361 (Academic, London, 1981).

    Google Scholar 

  14. McQueen, D. J., Post, J. R. & Mills, E. L. Can. J. Fish. aquat. Sci. 43, 1571–1581 (1986).

    Article  Google Scholar 

  15. Sager, P. E. & Richman, S. Can. J. Fish. aquat. Sci. 48, 116–122 (1991).

    Article  Google Scholar 

  16. Gophen, M. J. Plank. Res. 3, 15–24 (1981).

    Article  Google Scholar 

  17. Gulati, R. D., Siewertsen, K. & Postema, G. Hydrobiologia 95, 127–163 (1982).

    Article  Google Scholar 

  18. Déssery, S., Lancelot, C. & Billen, G. Verh. int. Verein. theor. angew. Limnol. 22, 1504–1509 (1984).

    Google Scholar 

  19. Gulati, R. D. Verh. int. Verein. theor. angew. Limnol. 22, 863–867 (1984).

    Google Scholar 

  20. Gulati, R. D. Hydrobiologia 200/201, 99–118 (1990).

    Article  Google Scholar 

  21. Welschmeyer, N. A. & Lorenzen, C. J. Limnol. Oceanogr. 30, 1–21 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Hart, R. C. J. Plank. Res. 8, 401–426 (1986).

    Article  Google Scholar 

  23. Jarvis, A. C. J. Plank. Res. 8, 1065–1078 (1986).

    Article  Google Scholar 

  24. Jespersen, A. M., Christoffersen, K. & Riemann, B. Verh. int. Verein. theor. angew. Limnol. 23, 440–444 (1988).

    Google Scholar 

  25. Van Donk, E., Grimm, M. P., Gulati, R. D. & Klein Breteler, J. P. G. Hydrobiologia 200/201, 275–289 (1990).

    Article  Google Scholar 

  26. Van Donk, E. et al. Hydrobiologia 200/201, 291–301 (1990).

    Article  Google Scholar 

  27. Garnier, J. & Mourelatos, S. Freshwater Biol. 25, 515–523 (1991).

    Article  Google Scholar 

  28. Pinto-Coelho, R. M. Verh. int. Verein. theor. angew. Limnol. 24, 842–845 (1991).

    Google Scholar 

  29. Hatcher, B. G. Proc. 4th Int. Coral Reef Symp. 2, 515–524 (1981).

    Google Scholar 

  30. Carpenter, R. C. Ecol. Monogr. 56, 345–363 (1986).

    Article  Google Scholar 

  31. Jupp, B. P. & Spence, D. H. N. J. Ecol. 65, 431–446 (1977).

    Article  CAS  Google Scholar 

  32. Anderson, M. G. & Low, J. B. J. Wildl. Mgmt 40, 233–242 (1976).

    Article  Google Scholar 

  33. Williams, S. L. Marine Biol. 98, 447–455 (1988).

    Article  Google Scholar 

  34. Greenway, M. Aquat. Bot. 2, 117–126 (1976).

    Article  Google Scholar 

  35. Verhoeven, J. T. A. Aquat. Bot 8, 209–253 (1980).

    Article  CAS  Google Scholar 

  36. Cargill, S. M. & Jeffries, R. L. J. appl. Ecol. 21, 669–686 (1984).

    Article  Google Scholar 

  37. Smith, L. M. & Kadlec, J. A. Ecology 66, 259–265 (1985).

    Article  Google Scholar 

  38. Giroux, J.-F. & Bédard, J. J. appl. Ecol. 24, 773–788 (1987).

    Article  Google Scholar 

  39. Moen, J. & Oksanen, L. Nature 353, 510 (1991).

    Article  ADS  Google Scholar 

  40. Boyd, C. E. in Freshwater Wetlands (eds Good, R. E., Whigam, D. F. & Simpson, R. L.) 155–167 (Academic, New York, 1978).

    Google Scholar 

  41. DeNoyelles, F. & Likens, G. E. in An Ecosystem Approach to Aquatic Ecology (ed. Likens, G. E.) 161–175 (Springer, New York, 1985).

    Google Scholar 

  42. Behrendt, H. Arch. Hydrobiol. 118, 129–145 (1990).

    Article  CAS  Google Scholar 

  43. Duarte, C. M. Mar. Ecol. Prog. Ser. 67, 201–207 (1990).

    Article  ADS  Google Scholar 

  44. Lodge, D. M. Aquat. Bot. 41, 195–224 (1991).

    Article  Google Scholar 

  45. Elser, J. J. & Goldman, C. R. Limnol. oceanogr. 36, 64–90 (1991).

    Article  ADS  Google Scholar 

  46. Lubchenco, J. & Gaines, S. D. A. Rev. ecol. Syst. 12, 405–437 (1981).

    Article  Google Scholar 

  47. Crawley, M. J. Herbivory (Blackwell, Oxford, 1983).

    Google Scholar 

  48. Hay, M. E. & Fenical, W. A. Rev. ecol. Syst. 19, 111–145 (1988).

    Article  Google Scholar 

  49. Schroeder, L. A. J. theor. Biol. 93, 805–828 (1981).

    Article  ADS  Google Scholar 

  50. Scott, J. A., French, N. R. & Leetham, J. W. in Perspectives in Grassland Ecology (ed. French, N. R.) 89–105 (Springer, New York, 1979).

    Book  Google Scholar 

  51. Anderson, D. C. & MacMahon, J. A. Ecol. Monogr. 51, 179–202 (1981).

    Article  Google Scholar 

  52. Ingham, R. E. & Detling, J. K. Oecologia 63, 307–313 (1984).

    Article  ADS  CAS  Google Scholar 

  53. Kortright, F. H. The Ducks, Geese and Swans of North America (Stackpole Company, Harrisburg, PA, and Wildlife Management Institute, Washington DC, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyr, H., Pace, M. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361, 148–150 (1993). https://doi.org/10.1038/361148a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361148a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing