Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wild-type p53 activates transcription in vitro

Abstract

THE p53 protein is an important determinant in human cancer and regulates the growth of cells in culture1–3. It is known to be a sequence-specific DNA-binding protein4,5 with a powerful activation domain6–8, but it has not been established whether it regulates transcription directly. Here we show that intact purified wild-type human and murine p53 proteins strongly activate transcription in vitro. This activation depends on the ability of p53 to bind to a template bearing a p53-binding sequence. By contrast, tumour-derived mutant p53 proteins cannot activate transcription from the template at all, and when complexed to wild-type p53, these mutants block transcriptional activation by the wild-type protein. Moreover, the simian virus 40 large T antigen inhibits wild-type p53 from activating transcription. Our results support a model in which p53 directly activates transcription but this activity can be inhibited by mutant p53 and SV40 large T antigen through interaction with wild-type p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lane, D. P. & Benchimol, S. Genes Dev. 4, 1–8 (1990).

    Article  CAS  Google Scholar 

  2. Hollstein, M., Sidransky, B., Vogelstein, B. & Harris, C. C. Science 253, 49–53 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Levine, A. J., Momand, J. & Finlay, C. Nature 351, 453–456 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Kern, S. E. et al. Science 252, 1708–1711 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Bargonetti, J., Friedman, P. N., Kern, S. E., Vogelstein, B. & Prives, C. Cell 65, 1083–1091 (1991).

    Article  CAS  Google Scholar 

  6. Fields, S. & Jang, S. K. Science 249, 1046–1049 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Raycroft, L., Wu, H. Y. & Lozano, G. Science 249, 1049–1051 (1990).

    Article  ADS  CAS  Google Scholar 

  8. O'Rourke, R. W. et al. Oncogene 5, 1829–1832 (1990).

    CAS  Google Scholar 

  9. Zhu, H., Roy, A. L., Roeder, R. G. & Prywes, R. New Biologist 3, 455–464 (1991).

    CAS  PubMed  Google Scholar 

  10. Prywes, R., Fisch, T. M. & Roeder, R. G. Cold Spring Harbor Symp. quant. Biol. 53, 739–748 (1988).

    Article  CAS  Google Scholar 

  11. Kern, S. E. et al. Oncogene 6, 131–136 (1991).

    CAS  Google Scholar 

  12. Martinez, J., Georgoff, I., Martinez, J. & Levine, A. J. Genes Dev. 5, 151–159 (1991).

    Article  CAS  Google Scholar 

  13. Milner, J., Medcalf, E. A. & Cook, A. C. Molec. cell. Biol. 11, 12–19 (1991).

    Article  CAS  Google Scholar 

  14. Friedman, P. N., Kern, S. E., Vogelstein, B. & Prives, C. Proc. natn. Acad. Sci. U.S.A. 87, 9275–9279 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Levine, A. J. Virology 177, 419–426 (1990).

    Article  CAS  Google Scholar 

  16. Fried, M. & Prives, C. Cancer Cells 4, 1–16 (1986).

    CAS  Google Scholar 

  17. Wang, E., Friedman, P. N. & Prives, C. Cell 57, 379–392 (1989).

    Article  CAS  Google Scholar 

  18. Weintraub, H., Hauschka, S. & Tapscott, S. J. Proc. natn. Acad. Sci. U.S.A. 88, 4750–4751 (1991).

    Article  Google Scholar 

  19. Soussi, T., Caron de Fromentel, C. & May, P. Oncogene 5, 945–952 (1990).

    CAS  Google Scholar 

  20. Gannon, J. V., Greaves, R., Iggo, R. & Lane, D. P. EMBO J. 9, 1595–1602 (1990).

    Article  CAS  Google Scholar 

  21. Milner, J. & Medcalf, E. A. Cell 65, 765–774 (1991).

    Article  CAS  Google Scholar 

  22. Stenger, J. E. et al. Molec. Carcinogenesis 5, 102–106 (1992).

    Article  CAS  Google Scholar 

  23. Mercer, W. E., Shields, M. T., Lin, D., Appella, E. & Ullrich, S. J. Proc. natn. Acad. Sci. U.S.A. 88, 1958–1962 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Santhanum, U., Ray, A. & Sehgal, P. B. Proc. natn. Acad. Sci. U.S.A. 88, 7605–7609 (1991).

    Article  ADS  Google Scholar 

  25. Ginsberg, D., Mechta, F., Yaniv, M. & Oren, M. Proc. natn. Acad. Sci. U.S.A. 88, 9979–9983 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. Cell 63, 1129–1136 (1990).

    Article  CAS  Google Scholar 

  28. Crook, T., Tidy, J. A. & Vousden, K. H. Cell 67, 547–556 (1991).

    Article  CAS  Google Scholar 

  29. Murakami, Y., Asano, M., Satake, M. & Ito, Y. Oncogene 5, 5–14 (1990).

    CAS  PubMed  Google Scholar 

  30. Kern, S. E. et al. Science 256, 827–830 (1992).

    Article  ADS  CAS  Google Scholar 

  31. Zambetti, G. P. et al. Genes Dev. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmer, G., Bargonetti, J., Zhu, H. et al. Wild-type p53 activates transcription in vitro. Nature 358, 83–86 (1992). https://doi.org/10.1038/358083a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/358083a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing