Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic structure holography using thermal neutrons

Abstract

The idea of atomic-resolution holography has its roots in the X-ray work of Bragg1 and in Gabor's electron interference microscope2. Gabor's lensless microscope was not realized in his time, but over the past twelve years there has been a steady increase in the number of reports on atomic-resolution holography. All of this work involves the use of electrons3,4,5,6 or hard X-rays7,8,9,10,11 to produce the hologram. Neutrons are often unique among scattering probes in their interaction with materials: for example, the relative visibility of hydrogen and its isotopes is a great advantage in the study of polymers and biologically relevant materials. Recent work12 proposed that atomic-resolution holography could be achieved with thermal neutrons. Here we use monochromatic thermal neutrons, adopting the inside-source concept of Szöke13, to image planes of oxygen atoms located above and below a single hydrogen atom in the oxide mineral simpsonite14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plan view photograph of the experimental set-up.
Figure 2: Raw hologram data, plotted in 2° × 2° pixels on a surface of constant scattered wavevector magnitude (|kout| = 4.8 Å-1).
Figure 3: Reconstructed plane located approximately +0.9 Å from the hydrogen atom (the origin).
Figure 4: Reconstructed plane located approximately -1.4 Å from the hydrogen atom (the origin).

Similar content being viewed by others

References

  1. Bragg, W. L. The X-ray microscope. Nature 149, 470 (1942).

    Article  ADS  CAS  Google Scholar 

  2. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  CAS  Google Scholar 

  3. Harp, G. R., Saldin, D. K. & Tonner, B. P. Atomic-resolution electron holography in solids with localised sources. Phys. Rev. Lett. 65, 1012–1015 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Zharnikov, M., Weinelt, M., Zebish, P., Stichler, M. & Steinrück, H.-P. First experimental determination of an adsorption site using multiple wave number photoelectron diffraction patterns. Phys. Rev. Lett. 73, 3548–3551 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Sieger, M. T., Roesler, J. M., Lin, D.-S., Miller, T. & Chiang, T.-C. Holography of Ge(111)-c(2×8) by surface core-level photoemission. Phys. Rev. Lett. 73, 3117–3120 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Orchowski, A., Rau, W. D. & Lichte, H. Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399–402 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Tegze, M. & Faigel, G. Atomic-resolution X-ray holography. Europhys. Lett. 16, 41–46 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Gog, T. et al. Multiple-energy X-ray holography: atomic images of hematite (Fe2O3). Phys. Rev. Lett. 76, 3132–3135 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Tegze, M. & Faigel, G. X-ray holography with atomic resolution. Nature 380, 49–51 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Tegze, M., Faigel, G., Marchesini, S., Belakhovsky, M. & Chumakov, A. I. Three dimensional imaging of atoms with isotropic 0.5 Å resolution. Phys. Rev. Lett. 82, 4847–4850 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Bompadre, S. G., Petersen, T. W. & Sorensen, L. B. Tabletop Bremsstrahlung X-ray holography: making multiwavelength X-ray holograms. Phys. Rev. Lett. 83, 2741–2744 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Cser, L., Krexner, G. & Török, Gy. Atomic-resolution neutron holography. Europhys. Lett. 54(6), 747–752 (2001).

    Article  ADS  Google Scholar 

  13. Szöke, A. in Short Wavelength Coherent Radiation: Generation and Applications, Proc. Topical Meeting (eds Attwood, T. & Boker, J.) 361–467 (AIP Conf. Proc. No. 147, American Institute of Physics, New York, 1986).

    Google Scholar 

  14. Bowley, H. Simpsonite (sp. nov.) from Tabba Tabba, western Australia. J. R. Soc. W. Aust. 25, 89–92 (1939).

    CAS  Google Scholar 

  15. Faigel, G. & Tegze, M. X-ray holography. Rep. Prog. Phys. 62, 355–393 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Taylor, L. E. R. X-ray studies of Simpsonite. J. R. Soc. W. Aust. 25, 93–97 (1939).

    CAS  Google Scholar 

  17. Ecrit, T. S., Černý, P. & Hawthorne, F. C. The crystal chemistry of Simpsonite. Can. Mineral. 30, 663–671 (1992).

    Google Scholar 

  18. Barton, J. J. Removing multiple scattering and twin images from holographic images. Phys. Rev. Lett. 67, 3106–3109 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 3, 26–37 (1992).

    Article  Google Scholar 

  20. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic-resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  Google Scholar 

  21. Weik, M. et al. Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc. Natl Acad. Sci. USA 97, 623–628 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Spence, J. Holograms of atoms. Nature 410, 1037–1040 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the intellectual contributions of I. P. Swainson and the expert technical assistance of J. H. Fox and L. E. McEwan. We also thank T. S. Ecrit for providing the simpsonite crystal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Rogge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sur, B., Rogge, R., Hammond, R. et al. Atomic structure holography using thermal neutrons. Nature 414, 525–527 (2001). https://doi.org/10.1038/35107026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35107026

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing