Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

The future for stem cell research

Abstract

Stem cells have offered much hope by promising to greatly extend the numbers and range of patients who could benefit from transplants, and to provide cell replacement therapy to treat debilitating diseases such as diabetes, Parkinson's and Huntington's disease. The issue of stem cell research is politically charged, prompting biologists to begin engaging in ethical debates, and generating in the general public an unusually high level of interest in this aspect of biology. But excitement notwithstanding, there is a long way to go in basic research before new therapies will be established, and now the pressure is on for scientists and clinicians to deliver.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pluripotency of mouse embryonic stem (ES) cells.
Figure 2: A small primary neurosphere, obtained from one or a few cells from the dorsal telencephalon of a 14.5-d.p.c. mouse embryo, which has been grown in culture for 21 days.

References

  1. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974 (1998).

    Article  CAS  Google Scholar 

  5. Martin, G. R. & Evans, M. J. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell 2, 163–172 (1974).

    Article  CAS  Google Scholar 

  6. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Nichols, J., Chambers, I., Taga, T. & Smith, A. Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 128, 2333–2339 (2001).

    CAS  PubMed  Google Scholar 

  9. Anderson, D. J. Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19–35 (2001).

    Article  CAS  Google Scholar 

  10. Anderson, D. J., Gage, F. H. & Weissman, I. L. Can stem cells cross lineage boundaries? Nature Med. 7, 393–395 (2001).

    Article  CAS  Google Scholar 

  11. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Humpherys, D. et al. Epigenetic instability in ES cells and cloned mice. Science 293, 95–97 (2001).

    Article  CAS  Google Scholar 

  13. Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  Google Scholar 

  14. Ohta, H., Yomogida, K., Dohmae, K. & Nishimune, Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127, 2125–2131 (2000).

    CAS  Google Scholar 

  15. Langa, F. et al. Teratocarcinomas induced by embryonic stem (ES) cells lacking vimentin: an approach to study the role of vimentin in tumorigenesis. J. Cell Sci. 113, 3463–3472 (2000).

    CAS  PubMed  Google Scholar 

  16. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  Google Scholar 

  17. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Le Lievre, C. S. & Le Douarin, N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34, 125–154 (1975).

    CAS  PubMed  Google Scholar 

  19. Eguchi, G. & Kodama, R. Transdifferentiation. Curr. Opin. Cell Biol. 5, 1023–1028 (1993).

    Article  CAS  Google Scholar 

  20. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    Article  CAS  Google Scholar 

  22. Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Streit, A. & Stern, C. D. Neural induction. A bird's eye view. Trends Genet. 15, 20–24 (1999).

    Article  CAS  Google Scholar 

  24. Brockes, J. P. Amphibian limb regeneration: rebuilding a complex structure. Science 276, 81–87 (1997).

    Article  CAS  Google Scholar 

  25. Roberson, D. F., Weisleder, P., Bohrer, P. S. & Rubel, E. W. Ongoing production of sensory cells in the vestibular epithelium of the chick. Hear Res. 57, 166–174 (1992).

    Article  CAS  Google Scholar 

  26. Rivolta, M. N. et al. Auditory hair cell precursors immortalized from the mammalian inner ear. Proc. R. Soc. Lond. B 265, 1595–1603 (1998).

    Article  CAS  Google Scholar 

  27. Marshak, D. R., Gardner, R. L. & Gottleib, D. (eds) Stem Cell Biology (Cold Spring Harbor Laboratory Press, New York, 2001).

    Google Scholar 

Download references

Acknowledgements

I thank M. A. Surani for contributions to the glossary in Box 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Lovell-Badge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovell-Badge, R. The future for stem cell research. Nature 414, 88–91 (2001). https://doi.org/10.1038/35102150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing