Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast generation of magnetic fields in a Schottky diode

Abstract

For the development of future magnetic data storage technologies, the ultrafast generation of local magnetic fields is essential. Subnanosecond excitation of the magnetic state has so far been achieved by launching current pulses into micro-coils and micro-striplines1,2,3,4,5,6 and by using high-energy electron beams7. Local injection of a spin-polarized current through an all-metal junction has been proposed as an efficient method of switching magnetic elements8,9, and experiments seem to confirm this10,11,12,13. Spin injection has also been observed in hybrid ferromagnetic–semiconductor structures14,15. Here we introduce a different scheme for the ultrafast generation of local magnetic fields in such a hybrid structure. The basis of our approach is to optically pump a Schottky diode with a focused, 150-fs laser pulse. The laser pulse generates a current across the semiconductor–metal junction, which in turn gives rise to an in-plane magnetic field. This scheme combines the localization of current injection techniques11,12,13,16 with the speed of current generation at a Schottky barrier. Specific advantages include the ability to rapidly create local fields along any in-plane direction anywhere on the sample, the ability to scan the field over many magnetic elements and the ability to tune the magnitude of the field with the diode bias voltage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the experimental set-up and the symmetry of the magnetic field.
Figure 2: Experimental signature of precessional motion.
Figure 3: Voltage characteristics of the diode.

Similar content being viewed by others

References

  1. Hiebert, W. K., Stankiewicz, A. & Freeman, M. R. Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy. Phys. Rev. Lett. 79, 1134–1137 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Crawford, T. M., Silva, T. J., Teplin, C. W. & Rogers, C. T. Subnanosecond magnetization dynamics measured by the second-harmonic magneto-optic Kerr effect. Appl. Phys. Lett. 74, 3386–3388 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Hicken, R. J. & Wu, J. Observation of ferromagnetic resonance in the time domain. J. Appl. Phys. 85, 4580–4582 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Acremann, Y. et al. Imaging precessional motion of the magnetization vector. Science 290, 492–495 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Bauer, M., Lopusnik, R., Fassbender, J. & Hillebrands, B. Suppression of magnetic-field pulse-induced magnetization precession by pulse tailoring. Appl. Phys. Lett. 76, 2758–2760 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Choi, B. C., Belov, M., Hiebert, W. K., Ballentine, G. E. & Freeman, M. R. Ultrafast magnetization reversal dynamics investigated by time domain imaging. Phys. Rev. Lett. 86, 728–731 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Back, C. H. et al. Minimum field strength in precessional magnetization reversal. Science 285, 864–867 (1999).

    Article  CAS  Google Scholar 

  8. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Weber, W., Riesen, S. & Siegmann, H. C. Magnetization precession by hot spin injection. Science 291, 1015–1018 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Myers, E. B. et al. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  13. Wegrowe, J.-E. et al. Current-induced magnetization reversal in magnetic nanowires. Europhys. Lett. 45, 626–870 (1999).

    Article  ADS  Google Scholar 

  14. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–789 (1999).

    Article  ADS  Google Scholar 

  15. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Zhu, J.-G., Zheng, Y. & Prinz, G. A. Ultrahigh density vertical magnetoresistive random access memory. J. Appl. Phys. 87, 6668–6673 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Prinz, G. A., Rado, G. T. & Krebs, J. J. Magnetic properties of single-crystal (110) iron films grown on GaAs by molecular beam epitaxy. J. Appl. Phys. 53, 2087–2091 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Dumm, M. et al. Magnetism of ultrathin FeCo (001) films on GaAs(001). J. Appl. Phys. 87, 5457–5459 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

    Article  ADS  CAS  Google Scholar 

  20. Koopmans, B., Van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Ganping, Yu et al. Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system. Phys. Rev. Lett. 82, 3705–3708 (1999).

    Article  Google Scholar 

  22. Christianen, P. C. M. et al. Ultrafast carrier dynamics at a metal-semiconductor interface. J. Appl. Phys. 80, 6831–6838 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ETH Zurich, the Swiss National Foundation and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pescia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acremann, Y., Buess, M., Back, C. et al. Ultrafast generation of magnetic fields in a Schottky diode. Nature 414, 51–54 (2001). https://doi.org/10.1038/35102026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102026

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing