Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superconductivity in single crystals of the fullerene C70

A Retraction to this article was published on 06 March 2003

Abstract

The observation of superconductivity in doped C60 has attracted much attention1,2,3, as these materials represent an entirely new class of superconductors. A maximum transition temperature (Tc) of 40 K has been reported4 for electron-doped C60 crystals, while a Tc of 52 K has been seen5 in hole-doped crystals; only the copper oxide superconductors have higher transition temperatures. The results for C60 raise the intriguing questions of whether conventional electron–phonon coupling alone1 can produce such high transition temperatures, and whether even higher transition temperatures might be observed in other fullerenes6,7,8. There have, however, been no confirmed reports of superconductivity in other fullerenes, though it has recently been observed in carbon nanotubes9. Here we report the observation of superconductivity in single crystals of electric-field-doped C70. The maximum transition temperature of about 7 K is achieved when the sample is doped to approximately four electrons per C70 molecule, which corresponds to a half-filled conduction band. We anticipate superconductivity in smaller fullerenes at temperatures even higher than in C60 if the right charge density can be induced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistance of a field-effect-doped C70 single crystal as a function of temperature.
Figure 2: Transition temperature as a function of the doping level.

Similar content being viewed by others

References

  1. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Ramirez, A. P. C60 and its superconductivity. Supercond. Rev. 1, 1–101 (1994).

    CAS  Google Scholar 

  3. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Palstra, T. T. M. et al. Superconductivity at 40 K in cesium doped C60. Solid State Commun. 93, 327–330 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Schön, J. H., Kloc, Ch. & Batlogg, B. Superconductivity at 52 K in hole-doped C60. Nature 408, 549–552 (2000).

    Article  ADS  Google Scholar 

  6. Devos, A. & Lannoo, M. Electron-phonon coupling for aromatic molecular crystals: Possible consequences for their superconductivity. Phys. Rev. B 58, 8236–8239 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Cohen, M. L. Possibility of high temperature superconductivity in C36 and C24N12 solids. Am. Inst. Phys. Conf. Proc. 483, 359–365 (1999).

    ADS  CAS  Google Scholar 

  8. Piskoti, C., Yarger, J. & Zettl, A. C36, a new carbon solid. Nature 393, 771–774 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Tang, Z. K. et al. Superconductivity in 4 Å single-walled carbon nanotubes. Science 292, 2462–2465 (2001).

    Article  ADS  CAS  Google Scholar 

  10. Haddon, R. C. et al. Conducting films of C60 and C70 by alkali-metal doping. Nature 350, 320–322 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Wang, Z. H., Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Raman studies of electron-phonon interaction in KxC70. Phys. Rev. B 48, 16881–16884 (1994).

    Article  ADS  Google Scholar 

  12. Saito, S. & Oshiyama, A. Electronic and geometric structures of C70. Phys. Rev. B 44, 11532–11535 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Wang, Z. H. et al. Electronic properties of KxC70 thin films. Phys. Rev. B 48, 10657–10660 (1994).

    Article  ADS  Google Scholar 

  14. Wang, Z. H., Dresselhaus, M. S., Dresselhaus, G., Wang, K. A. & Eklund, P. C. Electronic properties of KxC70 thin films. II. Phys. Rev. B 49, 15890–15900 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Takahashi, T. et al. Comparative photoemission study of RbxC60, RbxC70 and RbC8. A pseudo-gap at the Fermi level in the fulleride. Physica C 190, 205–209 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Chen, X. H. et al. Synthesis, structure, and transport properties of novel fullerides A3C70 (A = Ba and Sm). J. Am. Chem. Soc. 122, 5729–5732 (2000).

    Article  CAS  Google Scholar 

  17. Schön, J. H., Kloc, Ch., Haddon, R. C. & Batlogg, B. A superconducting field-effect switch. Science 288, 656–658 (2000).

    Article  ADS  Google Scholar 

  18. Schön, J. H., Kloc, Ch. & Batlogg, B. Superconductivity in molecular crystals induced by charge injection. Nature 406, 704–706 (2000).

    Article  ADS  Google Scholar 

  19. Schön, J. H. et al. Gate-induced superconductivity in solution-processed, organic polymer films. Nature 410, 189–192 (2001).

    Article  ADS  Google Scholar 

  20. Blanc, H.-B. et al. Single-crystal X-ray diffraction study of the room temperature structure and orientational disorder of C70. Europhys. Lett. 27, 359–364 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Blanc, E., Bürgi, H.-B., Restori, R., Schwarzenbach, D. & Ochsenbein, Ph. X-ray diffraction study of the stacking faults in hexagonal C70 single crystals. Europhys. Lett. 33, 205–210 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Bürgi, H. B. et al. The structure of C60: orientational disorder in the low-temperature modification of C60. Angew. Chem. Int. Edn Engl. 31, 640–643 (1992).

    Article  Google Scholar 

  23. Wang, Z. H. et al. Electronic properties of KxC70 thin films. Phys. Rev. B 48, 10657–10660 (1994).

    Article  ADS  Google Scholar 

  24. Ohno, K., Jing-Zhi, Y., Maruyama, Y., Kawazoe, Y. & Takahashi, T. Electronic structures of C70 crystalline phases. Chem. Phys. Lett. 255, 367–372 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Golden, M. S. et al. The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. J. Phys. Condens. Matter 7, 8219–8247 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Kobayashi, M. et al. Structure sequence and possible superconductivity in potassium-doped fullerene C70Kx. Phys. Rev. B 48, 16877–16880 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Schluter, M., Lannoo, M., Needles, M. & Baraff, G. A. Electron-phonon coupling and superconductivity in alkali-intercalated C60 solid. Phys. Rev. Lett. 68, 526–529 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Access to beamline I711 at the MAX-II synchrotron storage ring in Lund is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Batlogg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, J., Kloc, C., Siegrist, T. et al. Superconductivity in single crystals of the fullerene C70. Nature 413, 831–833 (2001). https://doi.org/10.1038/35101577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101577

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing