Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The stability against freezing of an internal liquid-water ocean in Callisto

Abstract

The discovery of the induced magnetic field of Callisto—one of Jupiter's moons—has been interpreted1,2 as evidence for a subsurface ocean, even though the presence of such an ocean is difficult to understand in the context of existing theoretical models3,4,5. Tidal heating should not be significant for Callisto, and, in the absence of such heating, it is difficult to see how this internal ocean could have survived until today without freezing1,6. Previous work3,4 indicated that an outer ice layer on the ocean would be unstable against solid-state convection, which once begun would lead to total freezing of liquid water in about 108 years. Here I show that when a methodology7 for more physically reasonable water ice viscosities (that is, stress-dependent non-newtonian viscosities, rather than the stress-independent newtonian viscosities considered previously) is adopted, the outer ice shell becomes stable against convection. This implies that a subsurface ocean could have survived up to the present, without the need for invoking antifreeze substances or other special conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stability against convection of Callisto's outer ice shell.

Similar content being viewed by others

References

  1. Khurana, K. K. et al. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Zimmer, C., Khurana, K. K. & Kivelson, M. G. Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Reynolds, R. T. & Cassen, P. M. On the internal structure of the major satellites of the outer planets. Geophys. Res. Lett. 6, 121–124 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Cassen, P. M., Peale, S. J. & Reynolds, R. T. in Satellites of Jupiter (ed. Morrison, D.) 93–128 (Univ. Arizona Press, Tucson, 1982).

    Google Scholar 

  5. Schubert, G., Spohn, T. & Reynolds, R. T. in Satellites (eds Burns, J. A. & Matthews, M. S.) 224–292 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  6. Showman, A. P. & Malhotra, R. The Galilean satellites. Science 286, 77–84 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Anderson, J. D. et al. Distribution of rock, metals, and ices in Callisto. Science 280, 1573–1576 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Lewis, J. S. Satellites of the outer planets: thermal models. Science 172, 1127–1128 (1971).

    Article  ADS  CAS  Google Scholar 

  10. Consolmagno, G. J. & Lewis, J. S. The evolution of icy satellite interiors and surfaces. Icarus 34, 280–293 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Stevenson, D. J. An ocean within Callisto? Eos 79, F535 (1998).

    Google Scholar 

  12. Kargel, J. S. Ammonia-water volcanism on icy satellites: Phase relations at 1 atmosphere. Icarus 100, 556–574 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Kargel, J. S. et al. Europa's crust and ocean: origin, composition, and the prospects for life. Icarus 148, 226–265 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Sotin, C., Grasset, O. & Beauchesne, S. in Solar System Ices (eds Schmitt, B., De Bergh, C. & Festou, M.) 79–96 (Kluwer Academic, Dordrecht, 1998).

    Book  Google Scholar 

  15. Goldsby, D. L. & Kohlstedt, D. L. Grain boundary sliding in fine-grained ice I. Scripta Mater. 37, 1399–1406 (1997).

    Article  CAS  Google Scholar 

  16. Pappalardo, R. T. et al. Geological evidence for solid-state convection in Europa's ice shell. Nature 391, 365–368 (1998).

    Article  ADS  CAS  Google Scholar 

  17. McKinnon, W. B. Convective instability in Europa's floating ice shell. Geophys. Res. Lett. 26, 951–954 (1999).

    Article  ADS  Google Scholar 

  18. Goldsby, D. L. & Kohlstedt, D. L. Superplastic deformation of ice: Experimental observations. J. Geophys. Res. (in the press).

  19. Durham, W. B., Kirby, S. H. & Stern, L. A. The rheology of ice I at low stress and elevated confining pressure. J. Geophys. Res. (in the press).

  20. Goldsby, D. L. & Kohlstedt, D. L. Flow of ice I by dislocation, grain boundary sliding, and diffusion processes. Lunar Planet. Sci. XXVIII, 429–430 (1997).

    ADS  Google Scholar 

  21. Showman, A. P. & Malhotra, R. Tidal evolution into Laplace resonance and the resurfacing of Ganymede. Icarus 127, 93–111 (1997).

    Article  ADS  Google Scholar 

  22. Klinger, J. Influence of a phase transition of the ice on the heat and mass balance of comets. Science 209, 271–272 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Mueller, S. & McKinnon, W. B. Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution. Icarus 76, 437–464 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Kirk, R. L. & Stevenson, D. J. Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69, 91–134 (1987).

    Article  ADS  Google Scholar 

  25. Davies, M. E. et al. The control networks of the Galilean satellites and implications for global shape. Icarus 135, 372–376 (1998).

    Article  ADS  Google Scholar 

  26. McKinnon, W. B. in Solar System Ices (eds Schmitt, B., De Bergh, C. & Festou, M.) 525–550 (Kluwer Academic, Dordrecht, 1998).

    Book  Google Scholar 

  27. Solomatov, V. S. & Moresi, L.-N. Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996).

    Article  ADS  Google Scholar 

  28. Lupo, M. J. & Lewis, J. S. Mass-radius relationships in icy satellites. Icarus 40, 157–170 (1978).

    Article  ADS  Google Scholar 

  29. Durham, W. B., Kirby, S. H. & Stern, L. A. Creep of water ices at planetary conditions: A compilation. J. Geophys. Res. 102, 16293–16302 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Kamb, B. in Flow and Fracture of Rocks (eds Heard, H. C., Borg, I. Y., Carter, N. L. & Raleigh, C. B.) 211–241 (AGU Geophys. Monogr. Ser. 16, American Geophysical Union, Washington DC, 1972).

    Google Scholar 

Download references

Acknowledgements

I thank F. Anguita, O. Prieto, J. Ruiz, R. Tejero and A. Torices for suggestions, K. Bennett and J. Kargel for comments on the manuscript, and W. Durham and D. Goldsby for preprints of work in press.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, J. The stability against freezing of an internal liquid-water ocean in Callisto. Nature 412, 409–411 (2001). https://doi.org/10.1038/35086506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086506

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing