Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of chiral morphologies through selective binding of amino acids to calcite surface steps

Abstract

Many living organisms contain biominerals and composites with finely tuned properties, reflecting a remarkable level of control over the nucleation, growth and shape of the constituent crystals1,2,3,4,5,6. Peptides and proteins play an important role in achieving this control1,7,8. But the general view that organic molecules affect mineralization through stereochemical recognition, where geometrical and chemical constraints dictate their binding to a mineral, seems difficult to reconcile4 with a mechanistic understanding, where crystallization is controlled by thermodynamic and kinetic factors9. Indeed, traditional crystal growth models emphasize the inhibiting effect of so-called ‘modifiers’ on surface-step growth, rather than stereochemical matching to newly expressed crystal facets. Here we report in situ atomic force microscope observations and molecular modelling studies of calcite growth in the presence of chiral amino acids that reconcile these two seemingly divergent views. We find that enantiomer-specific binding of the amino acids to those surface-step edges that offer the best geometric and chemical fit changes the step-edge free energies, which in turn results in macroscopic crystal shape modifications. Our results emphasize that the mechanism underlying crystal modification through organic molecules is best understood by considering both stereochemical recognition and the effects of binding on the interfacial energies of the growing crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images showing the effect of amino acids on calcite morphology.
Figure 2: Orientational dependence of step-edge energy (two-dimensional Wulff plot) in the {104} plane.
Figure 3: Geometry of binding for aspartic acid adsorbed on the single (104) steps of calcite.

Similar content being viewed by others

References

  1. Mann, S. et al. Crystallization at inorganic-organic interfaces - biominerals and biomimetic synthesis. Science 261, 1286–1292 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Addadi, L., Moradian, L. J., Shay, E., Maroudas, N. G. & Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation - relevance to biomineralization. Proc. Natl Acad. Sci. USA 84, 2732–2736 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Sikes, C. S., Yeung, M. L. & Wheeler, A. P. in Surface Reactive Peptides And Polymers: Discovery And Commercialization (eds Sikes, C. S. & Wheeler, A. P.) ACS Symposium Series 444, Ch. 5, 50–71 (ACS Books, Washington DC, 1991).

    Google Scholar 

  4. Mann, S. et al. Crystallization at inorganic–organic interfaces - biominerals and biomimetic synthesis. Science 261, 1286–1292 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Mann, S., Didymus, J. M., Sanderson, N. P., Heywood, B. R. & Samper, E. J. A. Morphological influence of functionalized and non-functionalized d-alpha,omega-dicarboxylates on calcite crystallization. J. Chem. Soc. Faraday Trans. 86, 1873–1880 (1990).

    Article  CAS  Google Scholar 

  6. Berman, A., Addadi, L. & Weiner, S. Interaction of sea urchin skeleton macromoloecules with growing calcite crystals - a study of intracrystalline proteins. Nature 331, 546–548 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Berman, A. et al. Biological control of crystal texture - a widespread strategy for adapting crystal properties to function. Science 259, 776–779 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56–58 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Burton, W. K., Cabrera, N. & Frank, F. C. The growth of crystals and equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond. A 243, 299–358 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  10. Teng, H. H., Dove, P. M., Orme, C. A. & DeYoreo, J. J. Thermodynamics of calcite growth: Baseline for understanding biomineral formation. Science 282, 724–727 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Reeder, R. J. in Carbonates: Mineralogy And Chemistry (eds Reeder, R. J. & Mineralogical Society of America) Vol. II, Ch. 1, 1–47 (Mineralogical Society of America, Washington DC, 1983).

    Book  Google Scholar 

  12. Honess, A. P. & Jones, J. R. Etch figure Investigations with Optically Active Solvents. Technical Paper 35, 667–721 (Pennsylvania State College, Mineral Industries Experimental Station, 1937).

  13. Aizenberg, J. et al. Biologically induced reduction in symmetry - a study of crystal texture of calcitic sponge spicules. Chem. Eur. J. 1, 414–422 (1995).

    Article  CAS  Google Scholar 

  14. Didymus, J. M. et al. in Mechanisms And Phylogeny Of Mineralization In Biological Systems (eds Suga, S. & Nakahara, H.) 267–271 (Springer, Tokyo/New York, 1991).

    Book  Google Scholar 

  15. Weissbuch, I., Addadi, L., Lahav, M. & Leiserowitz, L. Molecular recognition at crystal interfaces. Science 253, 637–645 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Addadi, L. et al. A link between macroscopic phenomena and molecular chirality: crystals as probes for indirect assignment of absolute configuration of chiral molecules. Topics Stereochem. 16, 1 (1986).

    CAS  Google Scholar 

  17. Madura, J. D. et al. Interactions of the d-form and l-form of winter flounder antifreeze peptide with the (201) planes of ice. J. Am. Chem. Soc. 116, 417–418 (1994).

    Article  CAS  Google Scholar 

  18. Didymus, J. M., Young, J. R. & Mann, S. Construction and morphogenesis of the chiral ultrastructure of coccoliths from the marine alga Emiliania Huxleyi. Proc. R. Soc. Lond. Ser. B 258, 237–245 (1994).

    Article  ADS  Google Scholar 

  19. Mann, S., Sparks, N. H. & Blakemore, R. P. Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc. R. Soc. Lond. B 231, 477–487 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Zhao, X. Y., Zhao, R. G. & Yang, W. S. Scanning tunneling microscopy investigation of l-lysine adsorbed on Cu (001). Langmuir 16, 9812–9818 (2000).

    Article  CAS  Google Scholar 

  21. Wulff, G. Velocity of growth and dissolution of crystal faces. Z. Kristallogr. 34, 449–530 (1901).

    CAS  Google Scholar 

  22. Land, T. A., Martin, T. L., Potapenko, S., Palmore, G. T. & De Yoreo, J. J. Recovery of surfaces from impurity poisoning during crystal growth. Nature 399, 442–445 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Davis, K. J., Dove, P. M. & De Yoreo, J. J. The role of Mg2+ as an impurity in calcite growth. Science 290, 1134–1137 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Stipp, S. L. & Hochella, M. F. Structure and bonding environments at the calcite surface as observed with x-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochim. Cosmochim. Acta 55, 1723–1736 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Feidenhansl, R. Surface structure determination by X-ray diffraction. Surf. Sci. Rep. 10, 105–188 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Fenter, P. et al. Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta 64, 1221–1228 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Robinson, I. K. X-ray crystallography of surfaces and interfaces. Acta Crystal. A 54, 772–778 (1998).

    Article  Google Scholar 

  28. Albeck, S., Aizenberg, J., Addadi, L. & Weiner, S. Interactions of various skeletal intracrystalline components with calcite crystals. J. Am. Chem. Soc. 115, 11691–11697 (1993).

    Article  CAS  Google Scholar 

  29. Stewart, J. J. P. Optimization of parameters for semiempirical methods. 2. Applications. J. Comput. Chem. 10, 221–264 (1989).

    Article  CAS  Google Scholar 

  30. Cramer, C. J. & Truhlar, D. G. An scf solvation model for the hydrophobic effect and absolute free energies of aqueous solvation. Science 256, 213–217 (1992).

    Article  ADS  CAS  Google Scholar 

  31. Breneman, C. M. & Wiberg, K. B. Determining atom-centered monopoles from molecular electrostatic potentials - the need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990).

    Article  CAS  Google Scholar 

  32. Chirlian, L. E. & Francl, M. M. Atomic charges derived from electrostatic potentials - a detailed study. J. Comput. Chem. 8, 894–905 (1987).

    Article  CAS  Google Scholar 

  33. Aizenberg, J., Black, A. J. & Whitesides, G. M. Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495–498 (1999).

    Article  ADS  CAS  Google Scholar 

  34. Cramer, C. J. & Truhlar, D. G. General parameterized scf model for free energies of solvation in aqueous solution. J. Am. Chem. Soc. 113, 8305–8311 (1991).

    Article  CAS  Google Scholar 

  35. Cramer, C. J. & Truhlar, D. G. Am1-Sm2 and Pm3-Sm3 parameterized scf solvation models for free energies in aqueous solution. J. Computer-Aided Molecul. Design 6, 629–666 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Zepeda, S. Orme and J. Bearinger for assistance with AFM data collection, P. Fenter for performing the SXRD studies, A. Nelson and C. Evans for help with XPS, S. Sikes for helpful discussions and L. Addadi for a careful reading of the manuscript. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory and was supported by a grant to Georgia Institute of Technology from the Division of Geosciences and Engineering, Office of Basic Energy Sciences, Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.A. Orme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orme, C., Noy, A., Wierzbicki, A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001). https://doi.org/10.1038/35081034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081034

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing