Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Cancer genetics

Abstract

Cancer genetics has for many years focused on mutational events that have their primary effect within the cancer cell. Recently that focus has widened, with evidence of the importance of epigenetic events and of cellular interactions in cancer development. The role of common genetic variation in determining the range of individual susceptibility within the population is increasingly recognized, and will be addressed using information from the Human Genome Project. These new research directions will highlight determinants of cancer that lie outside the cancer cell, suggest new targets for intervention, and inform the design of strategies for prevention in groups at increased risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Nowell, P. C. The clonal evolution of tumour cell populations. Science 194, 23–28 (1974).

    Article  ADS  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Liotta, L. & Petricoin, E. Molecular profiling of human cancers. Nature Rev. Genet. 1, 48–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Baylin, S. B. & Herman, J. G. DNA methylation in tumorigenesis. Trends Genet. 16, 168–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rothman, N. et al. The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. Biochem. Biophys. Acta. 1471, C1–C10 (2001).

    CAS  PubMed  Google Scholar 

  6. Olden, K. & Wilson, S. Environmental health and genomics: visions and implications. Nature Rev. Genet. 1, 149–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Tlsty, T. D. & Hein, P. W. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr. Opin. Genet. Dev. 11, 54–59 (1998).

    Article  Google Scholar 

  8. Risch, A. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J. Natl Cancer Inst. 90, 1774–1768 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, H. & Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl Cancer Inst. 92, 1472–1489 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Easton, D. F., Ponder, M. A., Huson, S. M. & Ponder, B. A. J. An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am. J. Hum. Genet. 53, 305–313 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nadeau, J. H. Modifier genes in mice and humans. Nature Rev. Genet. 2, 165–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Harris, H. The analysis of malignancy by cell fusion: the position in 1988. Cancer Res. 48, 3302–3306 (1988).

    CAS  PubMed  Google Scholar 

  14. Park, M. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 205–228 (McGraw Hill, New York, 1998).

    Google Scholar 

  15. Bishop, J. M. Enemies within: the genesis of retrovirus oncogenes. Cell 23, 5–6 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Parada, L. P., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is a homologue of Harvey Sarcoma virus ras gene. Nature 297, 474–477 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Rabbitts, T. H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Brodeur, G. M. & Hogarty, M. D. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 161–172 (McGraw Hill, New York, 1998).

    Google Scholar 

  19. Mitelman, F., Mertens, F. & Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nature Genet. 13, 417–474 (1997).

    Article  Google Scholar 

  20. Gray, J. W. & Collins, C. Genome changes and gene expression in human solid tumours. Carcinogenesis 21, 443–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. The BAC Resource Consortium. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409, 953–957 (2001).

  22. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Comings, D. A general theory of carcinogenesis. Proc. Natl Cancer Inst. 70, 3324–3328 (1973).

    ADS  CAS  Google Scholar 

  24. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–781 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Weinberg, R. A. Tumor suppressor genes. Science 254, 1138–1146 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Fearon, E. R. in: The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 229–236 (McGraw Hill, New York, 1998).

    Google Scholar 

  27. Haber, D. & Harlow, E. Tumor suppressor genes: evolving definitions in the genomic age. Nature Genet. 16, 320–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Kinzler, K. W. & Vogelstein, B. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Orborne, R. J. & Hamshere, M. G. A genome-wide map showing common regions of loss of heterozygosity/allelic imbalance in breast cancer. Cancer Res. 60, 3706–3712 (2000).

    Google Scholar 

  30. Faro, M. L. et al. The murine gene p27KIP1 is haploinsufficient for tumour suppression. Nature 396, 177–180 (1998).

    Article  ADS  CAS  Google Scholar 

  31. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Cui, H. et al. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nature Med. 4, 1276–1280 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Cancer Inst. 95, 6870–6875 (1998).

    ADS  CAS  Google Scholar 

  34. Chen, R. Z., Pettersson, U., Beard, C., Jackson-Crushy, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature 395, 89–93 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Jackson-Crushy, L. . et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genet. 27, 31–39 (2001).

    Article  CAS  Google Scholar 

  36. Cormier, R. J. & Dove, W. F. Dnmtn/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice. Cancer Res. 60, 3965–3970 (2000).

    CAS  PubMed  Google Scholar 

  37. Issa, J.-P. J. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet. 7, 536–540 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Feinberg, A. P. Methylation meets genomics. Nature Genet. 27, 9–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Sapienza, C. Genome imprinting, cellular mosaicism and carcinogenesis. Mol. Carcinogenesis 3, 118–124 (1990).

    Article  CAS  Google Scholar 

  40. Engler, P. et al. A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell 65, 939–947 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Silver, A. J. & White, R. Inheritance of allelic blueprints for methylation patterns. Cell 54, 145–152 (1988).

    Article  Google Scholar 

  42. Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinogenesis 7, 139–146 (1993).

    Article  CAS  Google Scholar 

  43. Suzuki, S. et al. An approach to analysis of large scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res. 60, 5382–5385 (2000).

    CAS  PubMed  Google Scholar 

  44. Neal, D. E. & Donovan, J. L. Prostate cancer: to screen or not to screen? Lancet Oncol. 1, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Williams, J. A. Single nucleotide polymorphisms, metabolic activation and environmental carcinogenesis: why molecular epidemiologists should think about enzyme expression. Carcinogenesis 22, 209–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Ames, B. N. & Gold, L. S. Too many rodent carcinogens: mitogenesis increases mutagenesis. Science 249, 970–971 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Cordon-Carlo C. & Prives C. At the crossroads of inflammation and tumorigenesis. J. Exp. Med. 190, 1367–1370 (1999).

    Article  Google Scholar 

  49. Lowenfils, A. B. et al. Hereditary pancreatitis and the risk of pancreatic cancer. J. Natl Cancer Inst. 89, 442–446 (1997).

    Article  Google Scholar 

  50. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  51. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  52. Sternlicht, M. D. et al. The stromal protease MMP3/Stromelysin-1 promotes mammary carcinogenesis. Cell 96, 137–146 (1999).

    Article  Google Scholar 

  53. Coussens, L. M., Tinhl, C. C., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thomas, M. V. et al. A prospective study of endogenous serum hormone concentrations in post-menopausal women on the island of Guernsey. Br. J. Cancer 76, 401–405 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jernstrom, H. et al. Genetic and non-genetic factors associated with variation of plasma levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in healthy pre-menopausal women. Cancer Epidemiol. Biomarkers Prev. (in the press).

  56. Peto, J. in Cancer Incidence in Defined Populations Banbury Report 4 (eds Cairns, J., Lyon, J. L. & Skolnick, M.) (Cold Spring Harbor, New York, 1980).

    Google Scholar 

  57. Ponder, B. A. J. Inherited predisposition to cancer. Trends Genet. 6, 213–218 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Vogelstein, B. & Kinzler, K. W. (eds) The Genetic Basis of Human Cancer (McGraw Hill, New York, 1998).

    Google Scholar 

  59. Klausner, R. D. Studying cancer in the mouse. Oncogene 18, 5249–5252 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Ponder, B. A. J. Genetic testing for cancer risk. Science 278, 1050–1054 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Chen, F. et al. Germline mutations in the Von Hippel Lindau disease tumour suppressor gene: correlation with phenotype. Hum. Mutat. 5, 66–75 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Kinzler, K. W. & Vogelstein, B. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 565–587 (McGraw Hill, New York, 1998).

    Google Scholar 

  63. Eng. C. & The International RET Mutation Consortium. The relationship between specific RET protooncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. J. Am. Med. Assoc. 276, 1575–1579 (1996).

    Article  CAS  Google Scholar 

  64. Halberg, R. B. et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulations and specificity of modifiers. Proc. Natl Acad. Sci. USA 97, 3461–3466 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. The Anglian Breast Cancer Study Group. Prevalence of BRCA1 and BRCA2 mutations in a large population based series of breast cancer cases. Br. J Cancer 83, 1301–1308 (2000).

  66. Dunning, A. M. et al. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 8, 843–854 (1999).

    CAS  PubMed  Google Scholar 

  67. Chakravarti, A. ... to a future of genetic medicine. Nature 409, 822–823 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet. 2, 91–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. The International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

  70. Balmain, A. & Nagase, H. Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet. 14, 139–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Mackay, T. F. C. Quantitation trait loci in Drosophila. Nature Rev. Genet. 2, 11–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Bell, J. The new genetics in clinical practice. Br. Med. J. 316, 618–620 (1998).

    Article  CAS  Google Scholar 

  73. Holtzman, N. A. & Marteau, T. M. Will genetics revolutionize medicine? New Engl. J. Med. 343, 141–144 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize that space has restricted the topics and the references that could be included. I thank D. Easton for advice on the figure in Box 1, and several colleagues for helpful suggestions. B.A.J.P. is a Gibb Fellow of The Cancer Research Campaign (CRC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponder, B. Cancer genetics. Nature 411, 336–341 (2001). https://doi.org/10.1038/35077207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077207

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing