Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Membrane protein diffusion sets the speed of rod phototransduction

Abstract

Retinal rods signal the activation of a single receptor molecule by a photon1. To ensure efficient photon capture, rods maintain about 109 copies of rhodopsin densely packed into membranous disks2. But a high packing density of rhodopsin may impede other steps in phototransduction that take place on the disk membrane3, by restricting the lateral movement of, and hence the rate of encounters between, the molecules involved4,5,6. Although it has been suggested that lateral diffusion of proteins on the membrane sets the rate of onset of the photoresponse7, it was later argued that the subsequent processing of the complexes was the main determinant of this rate8,9. The effects of protein density on response shut-off have not been reported. Here we show that a roughly 50% reduction in protein crowding achieved by the hemizygous knockout of rhodopsin in transgenic mice accelerates the rising phases and recoveries of flash responses by about 1.7-fold in vivo. Thus, in rods the rates of both response onset and recovery are set by the diffusional encounter frequency between proteins on the disk membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal levels of other proteins in R+/- rod outer segments.
Figure 2: Accelerated flash response onset in R+/- rods.
Figure 3: Accelerated flash response recovery in R+/- rods.
Figure 4: Ca2+ feedback was unperturbed in R+/- rods.

Similar content being viewed by others

References

  1. Baylor, D. A., Lamb, T. D. & Yau, K.-W. Responses of retinal rods to single photons. J. Physiol. (Lond.) 288, 613–634 (1979).

    CAS  Google Scholar 

  2. Pugh, E. N. Jr & Lamb, T. D. Amplification and kinetics of the activation steps in phototransduction. Biochim. Biophys. Acta 1141, 111–149 (1993).

    Article  CAS  Google Scholar 

  3. Saxton, M. J. & Owicki, J. C. Concentration effects on reactions in membranes: rhodopsin and transducin. Biochim. Biophys. Acta 979, 27–34 (1989).

    Article  CAS  Google Scholar 

  4. Peters, R. & Cherry, R. J. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbruck equations. Proc. Natl Acad. Sci. USA 79, 4317–4321 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Tank, D. W., Wu, E. S., Meers, P. R. & Webb, W. W. Lateral diffusion of gramicidin C in phospholipid multibilayers. Effects of cholesterol and high gramicidin concentration. Biophys. J. 40, 129–135 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Tilton, R. D., Gast, A. P. & Robertson, C. R. Surface diffusion of interacting proteins. Effect of concentration on the lateral mobility of adsorbed bovine serum albumin. Biophys. J. 58, 1321–1326 (1990).

    Article  CAS  Google Scholar 

  7. Kahlert, M. & Hofmann, K. P. Reaction rate and collisional efficiency of the rhodopsin-transducin system in intact retinal rods. Biophys. J. 59, 375–386 (1991).

    Article  CAS  Google Scholar 

  8. Bruckert, F., Chabre, M. & Vuong, T. M. Kinetic analysis of the activation of transducin by photoexcited rhodopsin. Influence of the lateral diffusion of transducin and competition of guanosine diphosphate and guanosine triphosphate for the nucleotide site. Biophys. J. 63, 616–629 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Heck, M. & Hofmann, K. P. G-protein-effector coupling: a real-time light-scattering assay for transducin–phosphodiesterase interaction. Biochemistry 32, 8220–8227 (1993).

    Article  CAS  Google Scholar 

  10. Pugh, E. N. Jr, Nikonov, S. & Lamb, T. D. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr. Opin. Neurobiol. 9, 410–418 (1999).

    Article  CAS  Google Scholar 

  11. Naqvi, K. R. Diffusion-controlled reactions in two-dimensional fluids: discussion of measurements of lateral diffusion of lipids in biological membranes. Chem. Phys. Lett. 28, 280–284 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Pink, D. A. Protein lateral movement in lipid bilayers. Simulation studies of its dependence upon protein concentration. Biochim. Biophys. Acta 818, 200–204 (1985).

    Article  CAS  Google Scholar 

  13. Liebman, P. A. & Entine, G. Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 185, 457–459 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Poo, M. & Cone, R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247, 438–441 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Lem, J. et al. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc. Natl Acad. Sci. USA 96, 736–741 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Leskov, I. B. et al. The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27, 525–537 (2000).

    Article  CAS  Google Scholar 

  18. Chen, J., Makino, C. L., Peachey, N. S., Baylor, D. A. & Simon, M. I. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH- terminal truncation mutant. Science 267, 374–377 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Calvert, P. D., Ho, T. W., LeFebvre, Y. M. & Arshavsky, V. Y. Onset of feedback reactions underlying vertebrate rod photoreceptor light adaptation. J. Gen. Physiol. 111, 39–51 (1998).

    Article  CAS  Google Scholar 

  20. Koutalos, Y. & Yau, K.-W. Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends Neurosci. 19, 73–81 (1996).

    Article  CAS  Google Scholar 

  21. Pepperberg, D. R. et al. Light-dependent delay in the falling phase of the retinal rod photoresponse. Vis. Neurosci. 8, 9–18 (1992).

    Article  CAS  Google Scholar 

  22. Nikonov, S., Engheta, H. & Pugh, E. N. Jr Kinetics of recovery of the dark-adapted salamander rod photoresponse. J. Gen. Physiol. 111, 7–37 (1998).

    Article  CAS  Google Scholar 

  23. Dodd, R. L., Makino, C. L., Chen, J., Simon, M. I. & Baylor, D. A. Visual transduction in transgenic mouse rods lacking recoverin. Invest. Ophthalmol. Vis. Sci. 36, S641 (1995).

    Google Scholar 

  24. Skiba, N. P., Hopp, J. A. & Arshavsky, V. Y. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein. J. Biol. Chem. 275, 32716–32720 (2000).

    Article  CAS  Google Scholar 

  25. Tsang, S. H. et al. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science 282, 117–121 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Makino, E. R., Handy, J. W., Li, T. & Arshavsky, V. Y. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein β subunit. Proc. Natl Acad. Sci. USA 96, 1947–1952 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Smith, H. G. Jr, Stubbs, G. W. & Litman, B. J. The isolation and purification of osmotically intact discs from retinal rod outer segments. Exp. Eye Res. 20, 211–217 (1975).

    Article  Google Scholar 

  28. Yuan, C., Chen, H., Anderson, R. E., Kuwata, O. & Ebrey, T. G. The unique lipid composition of gecko (Gekko Gekko) photoreceptor outer segment membranes. Comp. Biochem. Physiol. B 120, 785–789 (1998).

    Article  CAS  Google Scholar 

  29. Sung, C.-H., Makino, C., Baylor, D. & Nathans, J. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J. Neurosci. 14, 5818–5833 (1994).

    Article  CAS  Google Scholar 

  30. Yau, K.-W. & Nakatani, K. Electrogenic Na–Ca exchange in retinal rod outer segment. Nature 311, 661–663 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Farabella, M. McClellan and M. Maude for technical assistance; R. Lefkowitz, A. Dizhoor, W. Smith, R. Lee, M. Simon, E. Makino and V. Arshavsky for antibodies; and E. Pugh Jr, D. Baylor and V. Arshavsky for comments on the manuscript. This work was supported by the E. Mathilda Ziegler Foundation (C.L.M.), Milton Fund (C.L.M.), the NIH (P.D.C., J.L., R.E.A.), Lion's of Massachusetts (C.L.M., J.L.), Fight for Sight (J.L.), Research to Prevent Blindness (C.L.M., J.L., R.E.A.), Foundation Fighting Blindness (J.L., R.E.A.), and the US Civilian Research and Development Foundation (V.I.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Calvert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvert, P., Govardovskii, V., Krasnoperova, N. et al. Membrane protein diffusion sets the speed of rod phototransduction. Nature 411, 90–94 (2001). https://doi.org/10.1038/35075083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075083

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing