Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Four-terminal resistance of a ballistic quantum wire

Abstract

The electrical resistance of a conductor is intimately related to the relaxation of the momentum of charge carriers. In a simple model, the accelerating force exerted on electrons by an applied electric field is balanced by a frictional force arising from their frequent collisions with obstacles such as impurities, grain boundaries or other deviations from a perfect crystalline order1. Thus, in the absence of any scattering, the electrical resistance should vanish altogether. Here, we observe such vanishing four-terminal resistance in a single-mode ballistic quantum wire. This result contrasts the value of the standard two-probe resistance measurements of h/2e2≈ 13 kΩ. The measurements are conducted in the highly controlled geometry afforded by epitaxial growth onto the cleaved edge of a high-quality GaAs/AlGaAs heterostructure. Two weakly invasive voltage probes are attached to the central section of a ballistic quantum wire to measure the inherent resistance of this clean one-dimensional conductor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic transport in cleaved-edge overgrowth quantum wires. a, Geometry of the CEO device.
Figure 2: Two- and four-terminal resistances of a ballistic quantum wire.
Figure 3: Magnetic field dependence of probe coupling.

Similar content being viewed by others

References

  1. Drude, P. Zur elektronentheori der metalles 1 Teil. Ann. Phys. 1, 566–613 (1900); Zur elektronentheori der metalles 2 Teil, Galvanomagnetische und thermomagnetisch effecte. Ann. Phys. 3, 369–402 (1900).

    Article  CAS  Google Scholar 

  2. Heiblum, M. Tunneling hot electron transfer amplifiers (THETA): Amplifiers operating up to the infrared. Solid State Electron. 24, 343–366 (1981).

    Article  ADS  CAS  Google Scholar 

  3. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C 21, L209–L214 (1988).

    Google Scholar 

  5. van Houten, H. et al. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas. Phys. Rev. B 39, 8556–8575 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Tarucha, S., Honda, T. & Saku, T. Reduction of quantized conductance at low temperature observed in 2 to 10 µm long quantum wires. Solid State Commun. 94, 413–418 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Yacoby, A. et al. Nonuniversal conductance quantization in quantum wires. Phys. Rev. Lett. 77, 4612–4615 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Rother, M., Wegscheider, W., Bichler, M. & Abstreiter, G. in Proc. of ICPS24 Vol. 2 (ed. Gershoni, D.) Th-P137 (World Scientific, Singapore, 1998).

    Google Scholar 

  9. Imry, Y. in Introduction to Mesoscopic Physics (eds Craighead, H. G. et al.) 89–120 (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  10. Landauer, R. Spatial variations of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  MathSciNet  Google Scholar 

  11. Landauer, R. Electrical resistance of disordered one-dimensional lattices. Phil. Mag. 21, 863–867 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Imry, Y. in Directions in Condensed Matter Physics (eds Grinstein, G. & Mazenko, G.) (World Scientific, Singapore, 1986).

    Google Scholar 

  13. Glazman, L. I., Lesovik, G. B. D., Khmel’nitskii, E. & Shekhter, R. I. Reflectionless quantum transport and fundamental ballistic-resistance steps in microscopic constrictions. JEPT Lett. 48, 238–241 (1988).

    ADS  Google Scholar 

  14. Pfeiffer, L. N. et al. Transport and optics in quantum wires fabricated by MBE overgrowth on the 〈110〉 cleaved edge. Microelectron. J. 28, 817–823 (1997).

    Article  Google Scholar 

  15. Engquist, H. L. & Anderson, P. W. Definition and measurement of the electrical and thermal resistances. Phys. Rev. B 24, 1151–1154 (1981).

    Article  ADS  Google Scholar 

  16. Buttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Buttiker, M. Role of quantum coherence in series resistors. Phys. Rev. B 33, 3020–3026 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Buttiker, M. Symmetry of electrical conduction. IBM J. Res. Dev. 32, 317–323 (1988).

    Article  MathSciNet  Google Scholar 

  19. de Picciotto, R. et al. 2D-1D coupling in cleaved edge overgrowth. Phys. Rev. Lett. 85, 1730–1733 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. L. Moustakas, S. H. Simon, A. Yacoby and C. M. Varma for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. de Picciotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Picciotto, R., Stormer, H., Pfeiffer, L. et al. Four-terminal resistance of a ballistic quantum wire. Nature 411, 51–54 (2001). https://doi.org/10.1038/35075009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing