Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromatic sensitivity of ganglion cells in the peripheral primate retina

Abstract

Visual abilities change over the visual field. For example, our ability to detect movement is better in peripheral vision than in foveal vision, but colour discrimination is markedly worse1,2. The deterioration of colour vision has been attributed to reduced colour specificity in cells of the midget, parvocellular (PC) visual pathway in the peripheral retina3,4,5. We have measured the colour specificity (red–green chromatic modulation sensitivity) of PC cells at eccentricities between 20 and 50 degrees in the macaque retina. Here we show that most peripheral PC cells have red–green modulation sensitivity close to that of foveal PC cells. This result is incompatible with the view that PC pathway cells in peripheral retina make indiscriminate connections (‘random wiring’) with retinal circuits devoted to different spectral types of cone photoreceptors4,6,7. We show that selective cone connections can be maintained by dendritic field anisotropy, consistent with the morphology of PC cell dendritic fields in peripheral retina8,9. Our results also imply that postretinal mechanisms contribute to the psychophysically demonstrated deterioration of colour discrimination in the peripheral visual field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of PC cells.
Figure 2: Modulation sensitivity.
Figure 3: PC cell dendritic tree9 on a fragment of macaque cone mosaic25 scaled to local cone density and gaussian filtered.
Figure 4: Simulation of cone inputs to peripheral PC cells.

Similar content being viewed by others

References

  1. Noorlander, C., Koenderink, J. J., Den Ouden, R. J. & Edens, B. W. Sensitivity to spatiotemporal colour contrast in the peripheral visual field. Vision Res. 23, 1–11 (1983).

    Article  CAS  Google Scholar 

  2. Mullen, K. T. Colour vision as a post-receptoral specialization of the central visual field. Vision Res. 31, 119–130 (1991).

    Article  CAS  Google Scholar 

  3. Shapley, R. & Perry, V. H. Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci. 9, 229–235 (1986).

    Article  Google Scholar 

  4. Lennie, P., Haake, P. W. & Williams, D. R. in Computational Models of Visual Processing (eds Landy, M. S. & Movshon, J. A.) 71–82 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  5. Mullen, K. T. & Kingdom, F. A. A. Losses in peripheral colour sensitivity predicted from “hit and miss” post-receptoral cone connections. Vision Res. 36, 1995–2000 (1996).

    Article  CAS  Google Scholar 

  6. Calkins, D. J. & Sterling, P. Evidence that circuits for spatial and color vision segregate at the first retinal synapse. Neuron 24, 313–321 (1999).

    Article  CAS  Google Scholar 

  7. Rodieck, R. W. in From Pigments to Perception: Advances in Understanding Visual Processes (eds Valberg, A. & Lee, B. B.) 83–93 (Plenum, London, 1991).

    Book  Google Scholar 

  8. Dacey, D. M. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13, 5334–5355 (1993).

    Article  CAS  Google Scholar 

  9. Goodchild, A. K., Ghosh, K. K. & Martin, P. R. Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J. Comp. Neurol. 366, 55–75 (1996).

    Article  CAS  Google Scholar 

  10. Wiesel, T. N. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966).

    Article  CAS  Google Scholar 

  11. De Monasterio, F. M. & Gouras, P. Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251, 167–195 (1975).

    Article  CAS  Google Scholar 

  12. Lee, B. B., Pokorny, J., Smith, V. C., Martin, P. R. & Valberg, A. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J. Opt. Soc. Am. 7, 2223–2236 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Wässle, H., Grünert, U., Martin, P. R. & Boycott, B. B. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Res. 34, 561–579 (1994).

    Article  Google Scholar 

  14. Packer, O. S., Williams, D. R. & Bensinger, D. G. Photopigment transmittance imaging of the primate photoreceptor mosaic. J. Neurosci. 16, 2251–2260 (1996).

    Article  CAS  Google Scholar 

  15. Roorda, A. & Williams, D. R. The arrangement of the three cone classes in the living human eye. Nature 397, 520–522 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Smith, V. C., Lee, B. B., Pokorny, J., Martin, P. R. & Valberg, A. Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. J. Physiol. (Lond.) 458, 191–221 (1992).

    Article  CAS  Google Scholar 

  17. Derrington, A. M. & Lennie, P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. (Lond.) 357, 219–240 (1984).

    Article  CAS  Google Scholar 

  18. Dreher, B., Fukada, Y. & Rodieck, R. W. Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of Old-World primates. J. Physiol. (Lond.) 258, 433–452 (1976).

    Article  CAS  Google Scholar 

  19. Gouras, P. & Zrenner, E. Enhancement of luminance flicker by color-opponent mechanisms. Science 205, 587–589 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Lankheet, M. J. M., Lennie, P. & Krauskopf, J. Temporal–chromatic interactions in LGN P-cells. Visual Neurosci. 15, 47–54 (1998).

    CAS  Google Scholar 

  21. Kaplan, E., Lee, B. B. & Shapley, R. M. in New Views of Primate Retinal Function Vol. 9 (eds Osborne, N. & Chader, J.) 273–336 (Pergamon, New York, 1989).

    Google Scholar 

  22. Dacey, D. M. Primate retina: cell types, circuits and color opponency. Prog. Retin. Res. 18, 737–763 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Smith, E. L., Chino, Y. M., Ridder, W. H., Kitagawa, K. & Langstom, A. Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys. Visual Neurosci. 5, 525–545 (1990).

    Article  Google Scholar 

  24. Watanabe, M. & Rodieck, R. W. Parasol and midget ganglion cells of the primate retina. J. Comp. Neurol. 289, 434–454 (1989).

    Article  CAS  Google Scholar 

  25. Roorda, A., Metha, A., Lennie, P. & Williams, D. R. Packing arrangement of the three cone classes in primate retina. Vision Res. (in the press).

  26. Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R. & Wong, R. O. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024–5036 (2000).

    Article  CAS  Google Scholar 

  27. Navarro, R., Artal, P. & Williams, D. R. Modulation transfer of the human eye as a function of retinal eccentricity. J. Opt. Soc. Am. 10, 201–212 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Roser and B. Grünert for technical assistance; B. Dreher, U. Grünert, P. Lennie and H. Wässle for helpful discussions and suggestions; A. Goodchild and K. Ghosh for Neurobiotin labelling of ganglion cells; and A. Roorda for cone matrix data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, P., Lee, B., White, A. et al. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410, 933–936 (2001). https://doi.org/10.1038/35073587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073587

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing