Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stable ultrahigh-density magneto-optical recordings using introduced linear defects

Abstract

The stability of data bits in magnetic recording media1,2 at ultra-high densities is compromised by the thermal ‘flips’—magnetic spin reversals—of nano-sized spin domains3, which erase the stored information. Media that are magnetized perpendicular to the plane of the film, such as ultrathin cobalt films or multilayered structures4,5, are more stable against thermal self-erasure2,6 than conventional memory devices. In this context, magneto-optical memories seem particularly promising for ultrahigh-density recording on portable disks, and bit densities of 100 Gbit inch-2 (ref. 7) have been demonstrated using recent advances in the bit writing and reading techniques7,8,9,10,11. But the roughness and mobility of the magnetic domain walls12,13 prevents closer packing of the magnetic bits, and therefore presents a challenge to reaching even higher bit densities. Here we report that the strain imposed by a linear defect in a magnetic thin film can smooth rough domain walls over regions hundreds of micrometres in size, and halt their motion. A scaling analysis of this process, based on the generic physics of disorder-controlled elastic lines14,15,16,17, points to a simple way by which magnetic media might be prepared that can store data at densities in excess of 1 Tbit inch-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A sketch of an ultrathin Pt/Co/Pt trilayer stack explored in this study.
Figure 2: Effect of a linear defect on domain walls in Pt/Co/Pt films.
Figure 3: Domain wall velocity as a function of applied magnetic field for different values of x.
Figure 4: A force field H(x) generated by a line defect along y repels a magnetic-field-driven domain wall.

Similar content being viewed by others

References

  1. Daniel, E. D., Mee, C. D. & Clark, M. H. (eds) Magnetic Recording: The First Hundred Years (IEEE Press, New York, 1998).

    Book  Google Scholar 

  2. Thompson, D. A. & Best, J. S. The future of magnetic data storage technology. IBM J. Res. Develop. 44, 311–322 (2000).

    Article  CAS  Google Scholar 

  3. Hubert, A. & Schäfer, R. Magnetic Domains (Springer, New York, 1998).

    Google Scholar 

  4. Kirby, R. D., Shen, J. X., Hardy, R. J. & Sellmyer, D. J. Magnetization reversals in nanoscale films with perpendicular anisotropy. Phys. Rev. B 65, R10810–R10813 (1994).

    Article  ADS  Google Scholar 

  5. Allenspach, R., Stampanoni, M. & Bischof, A. Magnetic domains in thin epitaxial Co/Au(111) films. Phys. Rev. Lett. 65, 3344–3347 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Weller, D. & Moser, A. Thermal effect limits in ultrahigh density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Partovi, A. Optical near-field aperture storage technique for high density, high performance data storage applications. SPIE 3864, 352–354 (1999).

    ADS  CAS  Google Scholar 

  8. Awano, H. & Ohta, N. Magnetooptical recording technology toward 100 Gb/in2. IEEE J. Select. Topics Quantum Electron. 4, 815–820 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. & Kostelak, R. L. Breaking the diffraction barrier: optical microscopy on a nanometer scale. Science 251, 1468–1470 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Partovi, A. et al. High-power laser light source for near-field optics and its application to high-density optical data storage. Appl. Phys. Lett. 75, 1515–1517 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Kaneko, M. Magnetic multilayer films for high density magneto-optical recording. J. Magn. Magn. Mater. 148, 351–356 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Han, S. K., Yu, S.-C. & Rao, K. V. Domain wall jaggedness induced by the random anisotropy orientation in magneto-optic materials: A computer simulation study. J. Appl. Phys. 79, 4260–4264 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Lemerle, S. et al. Domain wall creep in an Ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849–852 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Halpin-Healy, T. & Zhang, Y.-C. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–414 (1995).

    Article  ADS  Google Scholar 

  15. Hwa, T. From vortices to genomics. Nature 399, 17–18 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Krusin-Elbaum, L. et al. Superconductivity enhanced by Hg fission. Nature 389, 243–244 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Heanue, J. F., Bashaw, M. C. & Hasselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749–752 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Binnig, G. K., Rohrer, H. & Vettiger, P. Mass-storage applications of local probe arrays. US Patent 5,835,477 (1998).

  20. Nakamura, J., Miyamoto, M., Hosaka, S. & Koyanagi, H. High-density thermomagnetic recording method using a scanning tunneling microscope. J. Appl. Phys. 77, 779–781 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Argyle, B. E. & McCord, J. G. New laser illumination method for Kerr microscopy. J. Appl. Phys. 87, 6487–6489 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Weller, D. et al. Ion induced magnetization reorientation in Co/Pt multilayers for patterned media. J. Appl. Phys. 87, 5768–5770 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Deng, H., Jarratt, J. D., Minor, M. K. & Barnard, J. A. Artificially controlled stress anisotropy and magnetic properties of FeTaN thin films. J. Appl. Phys. 81, 4510–4512 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Theory of collective flux creep. Phys. Rev. Lett. 63, 2303–2306 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Chuang, D. S., Ballentine, C. A. & O'Handley, R. C. Surface and step magnetic anisotropy. Phys. Rev. B 49, 15084–15095 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Slonczewski, V. Vinokur, G. Blatter, and G. Zimanyi for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Krusin-Elbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krusin-Elbaum, L., Shibauchi, T., Argyle, B. et al. Stable ultrahigh-density magneto-optical recordings using introduced linear defects. Nature 410, 444–446 (2001). https://doi.org/10.1038/35068515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068515

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing