Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust

Abstract

The low concentrations of niobium, tantalum and titanium observed in island-arc basalts are thought to result from modification of the sub-arc mantle by a metasomatic agent, deficient in these elements, that originates from within the subducted oceanic crust1. Whether this agent is an hydrous fluid2 or a silica-rich melt3 has been discussed using mainly a trace-element approach4 and related to variable thermal regimes of subduction zones5. Melting of basalt in the absence of fluid both requires high temperatures and yields melt compositions unlike those found in most modern or Mesozoic island arcs6,7. Thus, metasomatism by fluids has been thought to be the most common situation. Here, however, we show that the melting of basalt under both H2O-added and low-temperature conditions can yield extremely alkali-rich silicic liquids, the alkali content of which increases with pressure. These liquids are deficient in titanium and in the elements niobium and tantalum and are virtually identical to glasses preserved in mantle xenoliths found in subduction zones6 and to veins found in exhumed metamorphic terranes of fossil convergent zones7. We also found that the interaction between such liquids and mantle olivine produces modal mineralogies that are identical to those observed in metasomatized Alpine-type peridotites8. We therefore suggest that mantle metasomatism by slab-derived melt is a more common process than previously thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normative (CIPW) compositions of natural slab melts (black circles) and of glasses obtained in melting experiments of basalts with added H2O (this study).
Figure 2: Na2O versus CaO plot of natural slab melts6,7 (black circles) and of glasses obtained in melting experiments (large white circles) using N-MORB type basalt protoliths.

Similar content being viewed by others

References

  1. Hofmann, A. W. Chemical differentiation of the Earth: the relationships between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Eiler, J. M., McInnes, B., Valley, J. W., Graham, C. M. & Stolper, E. M. Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393, 777–781 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Nicholls, I. A. & Ringwood, A. E. Effect of water on olivine stability in tholeiites and production of silica saturated magmas in island arc environment. J. Geol. 81, 285–300 (1973).

    Article  ADS  Google Scholar 

  4. Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. & van Calsteren, P. U–Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276, 551–555 (1997).

    Article  CAS  Google Scholar 

  5. Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Kepezhinskas, P. K., Defant, M. J. & Drummond, M. S. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the north Kamchatka arc. J. Petrol. 36, 1505–1527 (1995).

    CAS  Google Scholar 

  7. Sorensen, S. S. & Grossman, J. N. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. Geochim. Cosmochim. Acta 53, 3155–3177 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Zanetti, A., Mazzucchelli, Rivalenti, G. & Vannucci, R. The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib. Mineral. Petrol. 134, 107–122 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. C. Fluid-present melting of ocean crust in subduction zones. Geology 27, 1111–1114 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Peacock, S. M., Rushmer, T. & Thompson, A. B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Whinter, K. T. & Newton, R. C. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archean cratons. Bull. Geol. Soc. Denmark 39, 213–228 (1991).

    Google Scholar 

  12. Spulber, S. D. & Rutherford, M. J. The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J. Petrol. 24, 1–25 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Beard, J. S. & Lofgren, G. E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J. Petrol. 32, 365–401 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Sen, C. & Dunn, T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol. 117, 394–409 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Ryerson, F. J. & Watson, E. B. Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet. Sci. Lett. 86, 225–239 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Ulmer, P. & Trommsdorff, V. Serpentinite stability to mantle depths and subduction-related magmatism. Science 268, 858–861 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Schmidt, M. & Poli, S. Experimentally based water budget for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Atherton, M. P. & Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–146 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Carroll, M. J. & Wyllie, P. J. Experimental phase relations in the system peridotite-tonalite-H2O at 15 kbar: implications for assimilation and differentiation processes at the crust-mantle boundary. J. Petrol. 30, 1351–1382 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Sen, C. & Dunn, T. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib. Petrol. Mineral. 119, 422–432 (1994).

    Article  ADS  Google Scholar 

  22. Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem. Geol. 160, 335–356 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Kelemen, P., Shimizu, N. & Dunn, T. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La, and Ce during melt/rock reaction in the upper mantle. Earth Planet. Sci. Lett. 120, 111–134 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Yogodinzski, G. M., Volynets, O. N., Koloskov, A. V. & Seliverstov, N. I. Magnesian andesites and the subduction component in a strongly calcalkaline series at Piip volcano, far western Aleutian. J. Petrol. 34, 163–204 (1994).

    Article  ADS  Google Scholar 

  25. Ionov, D. A. & Hofmann, A. W. Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Chem. Geol. 131, 341–356 (1995).

    CAS  Google Scholar 

  26. Martin, H. Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas. Geology 14, 753–756 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Drummond, M. S., Defant, M. J. & Kepezhinskas, P. K. Petrogenesis of slab derived-tonalite-dacite adakite magmas. Trans. R. Soc. Edinburgh 87, 205–215 (1996).

    Article  CAS  Google Scholar 

  28. Schneider, M. E. & Eggler, D. H. Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim. Cosmochim. Acta 50, 711–724 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Tatsumi, Y. Migration of fluid phases and genesis of basalt magmas in subduction zones. J. Geophys. Res. 94, 4697–4707 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Eiler, J. M. et al. Oxygen isotopes geochemistry of oceanic-arc lavas. J. Petrol. 41, 229–256 (2000).

    Article  ADS  CAS  Google Scholar 

  31. Hirschman, M. M., Baker, M. B. & Stolper, E. M. The effect of alkalis on the silica content of mantle-derived melts. Geochim. Cosmochim. Acta 62, 883–902 (1998).

    Article  ADS  Google Scholar 

  32. Schiano, P. et al. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc-lavas. Nature 377, 595–600 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Scaillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prouteau, G., Scaillet, B., Pichavant, M. et al. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197–200 (2001). https://doi.org/10.1038/35065583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065583

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing