Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å

Abstract

A multitude of heptahelical receptors use heterotrimeric G proteins to transduce signals to specific effector target molecules. The G protein transducin, Gt, couples photon-activated rhodopsin with the effector cyclic GMP phosophodiesterase (PDE) in the vertebrate phototransduction cascade. The interactions of the Gt α-subunit (αt) with the inhibitory PDE γ-subunit (PDEγ) are central to effector activation, and also enhance visual recovery in cooperation with the GTPase-activating protein regulator of G-protein signalling (RGS)-9 (refs 1,2,3). Here we describe the crystal structure at 2.0 Å of rod transducin Å·GDP·AlF-4 in complex with the effector molecule PDEγ and the GTPase-activating protein RGS9. In addition, we present the independently solved crystal structures of the RGS9 RGS domain both alone and in complex with αt/i1·GDP·AlF-4. These structures reveal insights into effector activation, synergistic GTPase acceleration, RGS9 specificity and RGS activity. Effector binding to a nucleotide-dependent site on αt sequesters PDEγ residues implicated in PDE inhibition, and potentiates recruitment of RGS9 for hydrolytic transition state stabilization and concomitant signal termination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the αt/i1·GDP·AlF-4·PDEγ·RGS9 heterotrimeric complex with αt/i1 shown in green, the switch regions of αt/i1 shown in blue, PDEγ shown in orange and RGS9 shown in lavender.
Figure 2: Sequence alignment and secondary-structure features of RGS domains, PDEγ subunits and Gα subunits.
Figure 3: PDEγ/αt/i1 interactions.
Figure 4: Solvent-accessible surface coloured according to electrostatic potential in the range -10kBT (red) to +10kBT (blue), where kB is Boltzmann's constant, and T is the absolute temperature (in K).
Figure 5: Interaction modes of the Gα switch II region with Gα effector molecules and the Gβγ subunit.
Figure 6: RGS9/αt/i1 interactions.

Similar content being viewed by others

References

  1. Angleson, J. K. & Wensel, T. G. A GTPase-accelerating factor for transducin, distinct from its effector cGMP phosphodiesterase, in rod outer segment membranes. Neuron 11, 939–949 (1993).

    Article  CAS  Google Scholar 

  2. He, W., Cowan, C. W. & Wensel, T. G. RGS9, a GTPase accelerator for phototransduction. Neuron 20, 95–102 (1998).

    Article  Google Scholar 

  3. Chen, C.-K. et al. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403, 557–560 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Skiba, N. P., Bae, H. & Hamm, H. E. Mapping of effector binding sites of transducin α-subunit using Gαi/Gαi1 chimeras. J. Biol. Chem. 271, 413–424 (1996).

    Article  CAS  Google Scholar 

  5. Skiba, N. P., Yang, C.-S., Huang, T., Bae, H. & Hamm, H. E. The α-helical domain of Gαt determines specific interaction with regulator of G protein signaling 9. J. Biol. Chem. 274, 8770–8778 (1999).

    Article  CAS  Google Scholar 

  6. Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366, 654–663 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α·GDP·AlF-4. Nature 372, 276–279 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Tesmer, J. J. G., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF-4-activated Giα1: Stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  10. Spink, K. E., Polakis, P. & Weis, W. I. Structural basis of the Axin–adenomatous polyposis coli interaction. EMBO J. 19, 2270–2279 (2000).

    Article  CAS  Google Scholar 

  11. De Alba, E., De Vries, L., Farquhar, M. G. & Tjandra, N. Solution structure of human GAIP (Gα interacting protein): a regulator of G protein signaling. J. Mol. Biol. 291, 927–939 (1999).

    Article  CAS  Google Scholar 

  12. Tsang, S. H. et al. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science 282, 117–121 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Slepak, V. Z. et al. An effector site that stimulates G-protein GTPase in photoreceptors. J. Biol. Chem. 270, 14319–14324 (1995).

    Article  CAS  Google Scholar 

  14. Faurobert, E., Otto-Bruc, A., Chardin, P. & Chabre, M. Tryptophan W207 in transducin Tα is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. EMBO J. 12, 4191–4198 (1993).

    Article  CAS  Google Scholar 

  15. Natochin, M., Granovsky, A. E. & Artemyev, N. O. Identification of effector residues on photoreceptor G protein, transducin. J. Biol. Chem. 273, 21808–21815 (1998).

    Article  CAS  Google Scholar 

  16. Muradov, K. G. & Artemyev, N. O. Loss of the effector function in a transducin-α mutant associated with Nougaret night blindness. J. Biol. Chem. 275, 6969–6974 (2000).

    Article  CAS  Google Scholar 

  17. Liu, Y., Arshavsky, V. Y. & Ruoho, A. E. Interaction sites of the COOH-terminal region of the γ subunit of cGMP phosphodiesterase with the GTP-bound α subunit of transducin. J. Biol. Chem. 271, 26900–26907 (1996).

    Article  CAS  Google Scholar 

  18. Artemyev, N. O., Rarick, H. M., Mills, J. S., Skiba, N. P. & Hamm, H. E. Sites of interaction between rod G-protein α-subunit and cGMP-phosphodiesterase γ-subunit: Implications for the phosphodiesterase activation mechanism. J. Biol. Chem. 267, 25067–25072 (1992).

    CAS  PubMed  Google Scholar 

  19. Tesmer, J. J. G., Sunahara, R. K., Gilman, A. G. & Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsα·GTPγS. Science 278, 1907–1916 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Yan, S.-Z., Huang, Z.-H., Rao, V. D., Hurley, J. H. & Tang, W.-J. Three discrete regions of mammalian adenylyl cyclase form a site for Gsα activation. J. Biol. Chem. 272, 18849–18854 (1997).

    Article  CAS  Google Scholar 

  21. Lipkin, V. M., Dumler, I. L., Muradov, K. G., Artemyev, N. O. & Etingof, R. N. Active sites of the cyclic GMP phosphodiesterase γ-subunit of retinal rod outer segments. FEBS Lett. 234, 287–290 (1988).

    Article  CAS  Google Scholar 

  22. Brown, R. L. Functional regions of the inhibitory subunit of retinal rod cGMP phosphodiesterase identified by site-specific mutagenesis and fluorescence spectroscopy. Biochemistry 31, 5918–5925 (1992).

    Article  CAS  Google Scholar 

  23. Lambright, D. G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Natochin, M. & Artemyev, N. O. Substitution of transducin Ser202 by Asp abolishes G-protein/RGS interaction. J. Biol. Chem. 273, 4300–4303 (1998).

    Article  CAS  Google Scholar 

  25. Nekrasova, E. R. et al. Activation of transducin guanosine triphosphatase by two proteins of the RGS family. Biochemistry 36, 7638–7643 (1997).

    Article  CAS  Google Scholar 

  26. McEntaffer, R. L., Natochin, M. & Artemyev, N. O. Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effector molecule. Biochemistry 38, 4931–4937 (1999).

    Article  CAS  Google Scholar 

  27. Sowa, M. E., He, W., Wensel, T. G. & Lichtarge, O. A regulator of G protein signaling interaction surface linked to effector specificity. Proc. Natl Acad. Sci. USA 97, 1483–1488 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  30. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Berlot, Y. Korkhin, D. Lambright, L. Rice and J. Steitz for useful discussions; A. Brunger, P. Adams, R. Grosse-Kunstleve for help with CNS; and W. Minor and Z. Otwinowski for pre-release of HKL2000. We also thank staff of the SBC beamline 19-ID: R. Alkire, N. E.C. Duke, S. L. Ginell, K. Lazarski, S. Korolev, F. J. Rotella, R. Sanishvili, J. Lazarz, and A. Joachimiak. Use of the ANL SBC beamline at the APS was supported by the US Department of Energy, Office of Biological and Environmental Research. This work is supported in part by a NIH grant to P.B.S. M.A.K. is a HHMI Fellow of the LSRF. C.W.C. was supported by an NIH grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. Slep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slep, K., Kercher, M., He, W. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001). https://doi.org/10.1038/35059138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059138

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing