Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic evidence against panmixia in the European eel

Abstract

The panmixia hypothesis—that all European eel (Anguilla anguilla) migrate to the Sargasso Sea for reproduction and comprise a single, randomly mating population—is widely accepted1,2. If true, then this peculiar life history strategy would directly impact the population genetics of this species, and eels from European and north African rivers should belong to the same breeding population through the random dispersal of larvae. To date, the panmixia hypothesis has remained unchallenged: genetic studies realized on eel's mitochondrial DNA failed to detect any genetic structure3,4,5; and a similar lack of structure was found using allozymes6,7, with the exception of clinal variation imposed by selection8,9. Here we have used highly polymorphic genetic markers that provide better resolution10,11 to investigate genetic structure in European eel. Analysis of seven microsatellite loci among 13 samples from the north Atlantic, the Baltic Sea and the Mediterranean Sea basins reveals that there is global genetic differentiation12. Moreover, pairwise Cavalli-Sforza and Edwards'13 chord distances correlate significantly with coastal geographical distance. This pattern of genetic structure implies non-random mating and restricted gene flow among eels from different sampled locations, which therefore refute the hypothesis of panmixia. Consequently, the reproductive biology of European eel must be reconsidered14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sampling locations.
Figure 2: Genetic distance (DCE), based on seven microsatellite loci, versus coastal geographical distances for all possible pairwise combinations of 13 A. anguilla samples.
Figure 3: Neighbour-joining phenogram depicting genetic distance relationships based on Cavalli-Sforza and Edward's chord distances among 13 European eel samples.

Similar content being viewed by others

References

  1. Schmidt, J. The breeding places of the eel. Smithonian Inst. Ann. Rep. 1924, 279–316 (1925).

    Google Scholar 

  2. Tesch, F.-W. The Eel (Chapman and Hall, London, 1977).

    Book  Google Scholar 

  3. Avise, J. C., Helfman, G. S., Saunders, N. C. & Hales, L. S. Mitochondria DNA differentiation in North Atlantic eels: population genetic consequences of an unusual life history pattern. Proc. Natl Acad. Sci. USA 83, 4350–4354 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Sang, T.-Z., Chang, H.-Y., Chen, C.-T. & Hui, C.-F. Population structure of the Japanese eel, Anguilla japonica. Mol. Biol. Evol. 11, 250–260 (1994).

    CAS  PubMed  Google Scholar 

  5. Lintas, C., Hirano, J. & Archer, S. Genetic variation in the European eel (Anguilla anguilla). Mol. Mar. Biol. Biotech. 7, 263–269 (1998).

    CAS  Google Scholar 

  6. DeLigny, W. & Pantelouris, E. M. Origin of the European eel. Nature 246, 518–519 (1973).

    Article  ADS  Google Scholar 

  7. Comparini, A., Rizzotti, M. & Rodinó, E. Genetic control and variability of phosphoglucose isomerase (PGI) in eels from the Atlantic ocean and the Mediterranean sea. Mar. Biol. 43, 109–116 (1977).

    Article  CAS  Google Scholar 

  8. Pantelouris, E. M., Arnason, A. & Tesch, F. W. Genetic variation in the eel. Genet. Res. Camb. 16, 277–284 (1970).

    Article  CAS  Google Scholar 

  9. Williams, G. C. & Koehn, R. K. in Evolutionary Genetics of Fishes (ed. Turner, B. J.) 529–560 (Plenum, New York, 1984).

    Book  Google Scholar 

  10. Ruzzante, D. E., Taggart, C. T., Cook, D. A & Goddard, S. V. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) of Newfoundland: a test and evidence of temporal stability. Can. J. Fish. Aquat. Sci. 54, 2700–2708 (1998).

    Article  Google Scholar 

  11. Shaw, P. W., Turan, C., Wright, J. M., O'Connell, M. & Carvalho, G. R. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83, 490–499 (1999).

    Article  CAS  Google Scholar 

  12. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  13. Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Castonguay, M., Hodson, P. V., Moriarty, C., Drinkwater, K. F. & Jessop, B. M. Is there a role of ocean environment in American and European eel decline? Fish. Oceanogr. 3, 197–203 (1994).

    Article  Google Scholar 

  15. Tsukamoto, K., Nakai, I. & Tesch, W.-V. Do all freshwater eels migrate? Nature 396, 635–636 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249.

  17. Rice, W. R. Analysing tables of statistical tests. Evolution 43, 223–225 (1989).

    Article  Google Scholar 

  18. Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572 (1994).

    Article  Google Scholar 

  19. Waples, R. S. Separating the wheat from the chaff: patterns of genetic differentiation in high geneflow species. J. Hered. 89, 438–450 (1998).

    Article  Google Scholar 

  20. Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53, 1898–1914 (1999).

    Article  Google Scholar 

  21. Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS  PubMed  Google Scholar 

  22. Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  Google Scholar 

  23. Avise, J. C. et al. The evolutionary genetic status of Icelandic eels. Evolution 44, 1254–1262 (1990).

    Article  Google Scholar 

  24. Lecomte-Finiger, R. The early life of the European eel. Nature 370, 424 (1994).

    Article  ADS  Google Scholar 

  25. Marchese, P. J. Variability in the Gulf stream recirculation gyre. J. Geophys. Res. 104, 29549–29560 (1999).

    Article  ADS  Google Scholar 

  26. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning. A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1982).

    Google Scholar 

  27. Felsenstein, J. PHYLIP (Phylogeny inference package) manual, version 3.5c (Univ. Washington, Seattle, 1993).

    Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the following individuals and organizations for providing the samples used in this study: P. Prouzet, G. Adam, M.-N. de Casamajor, S. L. Jónsdóttir, E. Feunteun, P. Lambert, P. Dumont, C. Briand, R. Leconte, A. Crivelli, C. Gazeau, M.-F. Gazerque, D. Fatin, H. Wickström, A. Yahyaoui, C. Antunes, E. Ciccotti, A. Vøllestad, B. Knights, H. Wilkens and the CEMAGREF. We would also like to thank J. Dodson, M. Castonguay, S. Rogers and J. McNeil for helpful comments on an earlier versions of the manuscript. This work is a contribution to the programme of GIROQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Wirth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, T., Bernatchez, L. Genetic evidence against panmixia in the European eel. Nature 409, 1037–1040 (2001). https://doi.org/10.1038/35059079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059079

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing