Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dusty torus around the luminous young star LkHα101

Abstract

A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk1,2, through which matter is fed onto the embryonic star at the centre of the disk. When the temperature and density at the centre of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star3,4,5, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. But this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present images of a young star, LkHα101, in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions6, and we infer that the position of the inner edge is probably determined by sublimation of dust grains by direct stellar radiation, rather than by disk-reprocessing or viscous-heating processes as usually assumed29.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of the LkHα101 system.

Similar content being viewed by others

References

  1. Terebey, S., Shu, F. H. & Cassen, P. The collapse of the cores of slowly rotating isothermal clouds. Astrophys. J. 286, 529–551 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Yorke, H. W., Bodenheimer, P. & Laughlin, G. The formation of protostellar disks. 2: Disks around intermediate-mass stars. Astrophys. J. 443, 199–208 (1995).

    Article  ADS  Google Scholar 

  3. Cassen, P. M., Smith, B. F., Miller, R. H. & Reynolds, R. T. Numerical experiments on the stability of preplanetary disks. Icarus 48, 377–392 (1981).

    Article  ADS  Google Scholar 

  4. Shu, F. H., Tremaine, S., Adams, F. C. & Ruden, S. P. Sling amplification and eccentric gravitational instabilities in gaseous disks. Astrophys. J. 358, 495–514 (1990).

    Article  ADS  Google Scholar 

  5. Hollenbach, D., Johnstone, D., Lizano, S. & Shu, F. Photoevaporation of disks around massive stars and application to ultracompact H II regions. Astrophys. J. 428, 654–669 (1994).

    Article  ADS  Google Scholar 

  6. Hillenbrand, L. A., Strom, S. E., Vrba, F. J. & Keene, J. Herbig Ae/Be stars—Intermediate-mass stars surrounded by massive circumstellar accretion disks. Astrophys. J. 397, 613–643 (1992).

    Article  ADS  Google Scholar 

  7. Kessel, O., Yorke, H. W. & Richling, S. Photoevaporation of protostellar disks. III. The appearance of photoevaporating disks around young intermediate mass stars. Astron. Astrophys. 337, 832–846 (1998).

    ADS  Google Scholar 

  8. Hartmann, L., Kenyon, S. J. & Calvet, N. The excess infrared emission of Herbig Ae/Be stars—Disks or envelopes? Astrophys. J. 407, 219–231 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Böhm, T. & Catala, C. Forbidden lines in Herbig Ae/Be stars: the [O I](1F) 6300.31Å and 6363.79Å lines. I. Observations and qualitative analysis. Astron. Astrophys. 290, 167–175 (1994).

    ADS  Google Scholar 

  10. Miroshnichenko, A., Ivezic, Z. & Elitzur, M. On protostellar disks in Herbig Ae/Be stars. Astrophys. J. 475, L41–L44 (1997).

    Article  ADS  Google Scholar 

  11. Pezzuto, S., Strafella, F. & Lorenzetti, D. On the circumstellar matter distribution around Herbig Ae/Be stars. Astrophys. J. 485, 290–307 (1997).

    Article  ADS  Google Scholar 

  12. Miroshnichenko, A., Ivezic, Z., Vinkovic, D. & Elitzur, M. Dust emission from Herbig Ae/Be stars: evidence for disks and envelopes. Astrophys. J. 529, L115–L118 (1999).

    Article  ADS  Google Scholar 

  13. Barsony, M., Scoville, N. Z., Schombert, J. M. & Claussen, M. J. The circumstellar environment of the emission-line star LkH-alpha 101. Astrophys. J. 362, 674–690 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Hou, J., Jiang, D. & Fu, C. Physical properties of stellar winds from young stellar objects. Astron. Astrophys. 327, 725–735 (1997).

    ADS  Google Scholar 

  15. Tuthill, P. G., Monnier, J. D., Danchi, W. C., Wishnow, E. H. & Haniff, C. A. Michelson interferometry with the Keck I telescope. Publ. Astron. Soc. Pacif. 112, 555–565 (2000).

    Article  ADS  Google Scholar 

  16. Barsony, M., Schombert, J. M. & Kis-Halas, K. The LkH-alpha 101 infrared cluster. Astrophys. J. 379, 221–231 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Herbig, G. H. The spectrum of LkHα 101 in the near-infrared. Astrophys. J. 169, 537–541 (1971).

    Article  ADS  CAS  Google Scholar 

  18. Stine, P. C. & O'Neal, D. Radio emission from young stellar objects near LkHα 101. Astron. J. 116, 890–894 (1998).

    Article  ADS  Google Scholar 

  19. Harris, S. 5 GHz radio observations of LkHα 101, M1-82#1 and other infrared sources. Mon. Not. R. Astron. Soc. 174, 601–607 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Cohen, M., Bieging, J. H. & Schwartz, P. R. VLA observations of mass loss from T Tauri stars. Astrophys. J. 253, 707–715 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Panagia, N. Some physical parameters of early-type stars. Astron. J. 78, 929–934 (1973).

    Article  ADS  Google Scholar 

  22. Millan-Gabet, R. et al. Sub-astronomical unit structure of the near-infrared emission from AB Aurigae. Astrophys. J. 513, L131–L134 (1999).

    Article  ADS  Google Scholar 

  23. Millan-Gabet, R., Schloerb, F. P. & Traub, W. A. Spatially resolved circumstellar structure of Herbig Ae/Be stars in the near-infrared. Astrophys. J. 546, 358–381 (2001).

    Article  ADS  Google Scholar 

  24. Akeson, R. L. et al. Infrared interferometric observations of young stellar objects. Astrophys. J. 543, 313–317 (2000).

    Article  ADS  Google Scholar 

  25. Gull, S. F. & Skilling, J. Maximum entropy method in image processing. IEE Proc. F 131, 646–650 (1984).

    MATH  Google Scholar 

  26. Sivia, D. S. Phase Extension Methods. Thesis, Cambridge Univ. (1987).

    Google Scholar 

  27. Tuthill, P. G., Monnier, J. D. & Danchi, W. C. A dusty pinwheel nebula around the massive star WR 104. Nature 398, 487 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Tuthill, P. G., Monnier, J. D., Danchi, W. C. & Lopez, B. Smoke signals from IRC + 10216: 1. Milliarcsecond proper motions of the dust. Astrophys. J. 543, 284 (2000).

    Article  ADS  Google Scholar 

  29. Lynden-Bell, D. & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603–637 (1974).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Sivia for the maximum-entropy mapping program VLBMEM. Data were obtained at the W.M. Keck Observatory, made possible by the generous support of the W.M. Keck Foundation, operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. This work was supported through grants from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Tuthill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuthill, P., Monnier, J. & Danchi, W. A dusty torus around the luminous young star LkHα101. Nature 409, 1012–1014 (2001). https://doi.org/10.1038/35059014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059014

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing