Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prions: health scare and biological challenge

Key Points

  • Prions are the infectious agents that cause both bovine spongiform encephalopathy in cows and Creutzfeldt?Jakob disease in humans. In both, clinically detectable degeneration is only seen in the central nervous system (CNS).

  • In yeast, prions are defined as proteins that can exist in two conformations, one of which can induce the conversion of further prion molecules from one conformation into the other, and so is self-perpetuating and heritable.

  • In vitro conversion of the mammalian endogenous prion protein ? PrPC ? results in a moiety that has the physiochemical properties of PrpSc, the disease-associated protein. No experiments have so far unambiguously shown that PrpSc is a transmissable agent.

  • Neuronal cytotoxicity of PrpSc depends on the expression of cellular PrPC by target cells. Evidence indicates that the conversion of PrPC into PrPSc is the deleterious event. PrpC can adopt two orientations in the membrane, one of which, CtmPrP, correlates well with neurodegenerative changes.

  • Like viruses, prions can enter the enter the CNS through the immune system, lymphocytes and follicular dendritic cells. The presence of PrPC and terminally differentiated B cells is essential for invasion by infectious prions. How prions move from the germinal centres to the CNS is less clear, but might involve peripheral nerves and lymphocytes.

  • New variant (nv) CJD can be distinguished from sporadic CJD in that it mainly affects young people, develops more slowly and is distinguished by widespread vacuolation of the cortical neurophil and an accumulation of protein plaques in the brain.

  • Studies of neural degeneration patterns in mice, the biochemical properties of prions and epidemiology support the idea that the agent causing nvCJD is identical to that causing BSE when transmitted to humans.

  • It is unclear whether there is a subclinical or carrier status of the diease. To rule out the possibility of iatrogenic transmission, attention is now focused on preparation of blood products. Understanding the molecular basis of invasion should help to identify possible targets for intervention.

Abstract

Although human prion diseases are rare, the incidence of 'new variant' Creutzfeldt?Jakob disease in the United Kingdom is increasing exponentially. Given that this disease is probably the result of infection with bovine prions, understanding how prions replicate ? and how to counteract their action ? has become a central issue for public health. What are the links between the bovine and human prion diseases, and how do prions reach and damage the central nervous system?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Confirmed cases of BSE plotted by month and year of onset.
Figure 2: The 'protein-only' hypothesis and two popular models for the conformational conversion of PrPC into PrPSc.
Figure 3: Neuropathological features of transmissible spongiform encephalopathies.
Figure 4: Three-stage model of prion pathogenesis, and possible role of CtmPrP in cell death.
Figure 5: Model of prion neuroinvasion in mice.
Figure 6: Models of the signalling pathways required for the establishment and maintenance of functional follicular dendritic cells.

Similar content being viewed by others

References

  1. Cohen, C. H. & Valleron, A. J. When did bovine spongiform encephalopathy (BSE) start? Implications on the prediction of a new variant of Creutzfeldt-Jakob disease (nvCJD) epidemic. Int. J. Epidemiol. 28, 526?531 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, R. M. et al. Transmission dynamics and epidemiology of BSE in British cattle . Nature 382, 779?788 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Ferguson, N. M., Donnelly, C. A., Woolhouse, M. E. & Anderson, R. M. Estimation of the basic reproduction number of BSE: the intensity of transmission in British cattle. Proc. R Soc. Lond. B 266, 23?32 (1999).

    Article  CAS  Google Scholar 

  4. Doherr, M. G., Heim, D., Vandevelde, M. & Fatzer, R. Modelling the expected numbers of preclinical and clinical cases of bovine spongiform encephalopathy in Switzerland. Vet. Rec. 145, 155? 160 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Donnelly, C. A., Santos, R., Ramos, M., Galo, A. & Simas, J. P. BSE in Portugal: anticipating the decline of an epidemic . J. Epidemiol. Biostat. 4, 277? 283 (1999).

    CAS  PubMed  Google Scholar 

  6. Aguzzi, A. & Weissmann, C. Prion research: the next frontiers . Nature 389, 795?798 (1997).Most of the points that were unresolved when this review article was written continue to constitute the next frontiers.

    Article  CAS  PubMed  Google Scholar 

  7. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317?1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471?474 ( 1994).A milestone discovery in mammalian prion biochemistry: the first demonstration that PrPC can be made protease-resistant by PrPScin vitro.

    Article  CAS  PubMed  Google Scholar 

  9. Bessen, R. A. et al. Non-genetic propagation of strain-specific properties of scrapie prion protein Nature 375, 698? 700 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Raymond, G. J. et al. Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388, 285 ?288 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Telling, G. C. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein . Cell 83, 79?90 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Peyrin, J. M. et al. Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 10 , 723?729 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, D. R., Schmidt, B. & Kretzschmar, H. A. Role of microglia and host protein in neurotoxicity of a prion protein fragment. Nature 380, 345?347 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kunz, B., Sandmeier, E. & Christen, P. Neurotoxicity of prion peptide 106?126 not confirmed . FEBS Lett. 458, 65?68 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Büeler, H. R. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577 ?582 (1992).

    Article  PubMed  Google Scholar 

  16. Büeler, H. R. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339?1347 ( 1993). A 'citation classic', whose title says it all.

    Article  PubMed  Google Scholar 

  17. Sailer, A., Büeler, H., Fischer, M., Aguzzi, A. & Weissmann, C. No propagation of prions in mice devoid of PrP. Cell 77, 967? 968 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity . Nature 379, 339?343 (1996).The normal prion protein is not only necessary for prion propagation, but also for induction of neurotoxicity.

    Article  CAS  PubMed  Google Scholar 

  19. Horiuchi, M. & Caughey, B. Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J. 18, 3193?3203 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez, C. D., Yost, C. S., Prusiner, S. B., Myers, R. M. & Lingappa, V. R. Unusual topogenic sequence directs prion protein biogenesis. Science 248, 226 ?229 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Yost, C. S., Lopez, C. D., Prusiner, S. B., Myers, R. M. & Lingappa, V. R. Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein. Nature 343, 669?672 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Hegde, R. S. et al. A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827? 834 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Hegde, R. S. et al. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402, 822? 826 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cashman, N. R. et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell 61, 185? 192 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Kitamoto, T., Muramoto, T., Mohri, S., Doh ura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J. Virol. 65, 6292?6295 (1991).This paper showed that FDCs accumulate disease-associated prion protein, and kick-started the whole field of prion neural immunology.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brandner, S., Isenmann, S., Kuhne, G. & Aguzzi, A. Identification of the end stage of scrapie using infected neural grafts. Brain Pathol. 8, 19?27 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  27. Blättler, T. et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389, 69? 73 (1997).

    Article  PubMed  Google Scholar 

  28. Brandner, S. et al. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl Acad. Sci. USA 93, 13148?13151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguzzi, A. Neuro-immune connection in spread of prions in the body? Lancet 349, 742?743 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  30. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255?1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Race, R., Oldstone, M. & Chesebro, B. Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J. Virol. 74, 828?833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on prion protein- expressing follicular dendritic cells. Nature Med. 5, 1308?1312 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687?690 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  34. Manuelidis, L. et al. Follicular dendritic cells and dissemination of Creutzfeldt-Jakob disease. J. Virol. 74, 8614? 8622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257?1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med. 6, 719?720 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  37. Klein, M. A. et al. A role for complement in early prion pathogenesis. (submitted).

  38. Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med. 4, 1429? 1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Baldauf, E., Beekes, M. & Diringer, H. Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J. Gen. Virol. 78, 1187?1197 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  40. Glatzel, M. et al. Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proc. Natl Acad. Sci. USA 97, 442?447 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Glatzel, M. & Aguzzi, A. PrPC expression in the peripheral nervous system is a determinant of prion neuroinvasion. J. Gen. Virol. 81, 2813?2821 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Collins, S. et al. Surgical treatment and risk of sporadic Creutzfeldt-Jakob disease: a case-control study. Lancet 353, 693?697 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Will, R. et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921?925 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  44. Government report on the epidemiology of CJD. http://www.doh.gov.uk/cjd/stats/sept00.htm. (Department of Health, United Kingdom, 2000).

  45. Creutzfeldt, H. G. Über eine eigenartige herdförmige Erkrankung des Zentralnervensystems . Z. ges. Neurol. Psychiatr. 57, 1? 19 (1920).

    Article  Google Scholar 

  46. Jakob, A. Über eigenartige Erkrankungen des Zentralnervensystems mit bemerkenswertem anatomischem Befunde. (Spastische Pseudosklerose-Encephalomyelopathie mit disseminierten Degenerationsherden). Z. ges. Neurol. Psychiatr. 64, 147?228 ( 1921).

    Article  Google Scholar 

  47. Politopoulou, G., Seebach, J. D., Schmugge, M., Schwarz, H. P. & Aguzzi, A. Age-related expression of the cellular prion protein in human peripheral blood leukocytes. Haematologica 85, 580?587 ( 2000).

    CAS  PubMed  Google Scholar 

  48. Zeidler, M. et al. New variant Creutzfeldt-Jakob disease: psychiatric features . Lancet 350, 908?910 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Aguzzi, A. Between cows and monkeys. Nature 381, 734 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Zeidler, M. et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet 355, 1412 ?1418 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Hill, A. F., Zeidler, M., Ironside, J. & Collinge, J. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349, 99?100 ( 1997). A short communication with far-reaching consequences for public health.

    Article  CAS  PubMed  Google Scholar 

  52. Hill, A. F. et al. Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353, 183?189 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Collinge, J. Variant Creutzfeldt-Jakob disease. Lancet 354, 317?323 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352, 340? 342 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Parchi, P. et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann. Neurol. 46, 224?233 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  56. Fraser, H. & Dickinson, A. G. Distribution of experimentally induced scrapie lesions in the brain. Nature 216, 1310?1311 (1967).

    Article  CAS  PubMed  Google Scholar 

  57. Bruce, M. E. et al. Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature 389, 498? 501 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Aguzzi, A. & Weissmann, C. Spongiform encephalopathies: a suspicious signature. Nature 383, 666? 667 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685?690 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448?450 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  61. Chazot, G. et al. New variant of Creutzfeldt-Jakob disease in a 26-year-old French man. Lancet 347, 1181 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  62. Lasmézas, C. I. et al. BSE Transmission to Macaques. Nature 381, 743?744 (1996).

    Article  PubMed  Google Scholar 

  63. Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations. Nature Med. 4, 1157?1165 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Aguzzi, A. Protein conformation dictates prion strain. Nature Med. 4, 1125?1126 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Ghani, A. C., Donnelly, C. A., Ferguson, N. M. & Anderson, R. M. Assessment of the prevalence of vCJD through testing tonsils and appendices for abnormal prion protein. Proc. R Soc. Lond. B 267 , 23?29 (2000).

    Article  CAS  Google Scholar 

  66. Ghani, A. C., Ferguson, N. M., Donnelly, C. A., Hagenaars, T. J. & Anderson, R. M. Estimation of the number of people incubating variant CJD. Lancet 352, 1353?1354 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Race, R. & Chesebro, B. Scrapie infectivity found in resistant species. Nature 392, 770 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  68. Aguzzi, A. & Weissmann, C. Spongiform encephalopathies. The prion's perplexing persistence. Nature 392, 763?764 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Hill, A. F. et al. Species-barrier-independent prion replication in apparently resistant species. Proc. Natl Acad. Sci. USA 97, 10248?10253 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Frigg, R., Klein, M. A., Hegyi, I., Zinkernagel, R. M. & Aguzzi, A. Scrapie pathogenesis in subclinically infected B-cell-deficient mice. J. Virol. 73, 9584? 9588 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Aguzzi, A. Prion diseases, blood and the immune system: concerns and reality. Haematologica 85, 3?10 ( 2000).

    CAS  PubMed  Google Scholar 

  72. Hilton, D. A., Fathers, E., Edwards, P., Ironside, J. W. & Zajicek, J. Prion immunoreactivity in appendix before clinical onset of variant Creutzfeldt-Jakob disease. Lancet 352, 703?704 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Schreuder, B. E., van Keulen, L. J., Vromans, M. E., Langeveld, J. P. & Smits, M. A. Tonsillar biopsy and PrPSc detection in the preclinical diagnosis of scrapie . Vet. Rec. 142, 564?568 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Schreuder, B. E., van Keulen, L. J., Smits, M. A., Langeveld, J. P. & Stegeman, J. A. Control of scrapie eventually possible? Vet. Q. 19, 105?113 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Vankeulen, L. J. M. et al. Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. J. Clin. Microbiol. 34, 1228?1231 (1996).

    CAS  Google Scholar 

  76. Raeber, A. J. et al. PrP-dependent association of prions with splenic but not circulating lymphocytes of scrapie-infected mice. EMBO J. 18, 2702?2706 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gidon-Jeangirard, C. et al. Annexin V delays apoptosis while exerting an external constraint preventing the release of CD4+ and PrPC+ membrane particles in a human T lymphocyte model. J. Immunol. 162, 5712?5718 (1999).

    CAS  PubMed  Google Scholar 

  78. Ironside, J. W. et al. Retrospective study of prion-protein accumulation in tonsil and appendix tissues. Lancet 355, 1693? 1694 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Fischer, M. B., Roeckl, C., Parizek, P., Schwarz, H. P. & Aguzzi, A. Binding of disease-associated prion protein to plasminogen . Nature 408, 479?483 (2000).Plasminogen seems to be the first endogenous protein that discriminates between normal and pathological prion proteins.

    Article  CAS  PubMed  Google Scholar 

  80. Priola, S. A., Raines, A. & Caughey, W. S. Porphyrin and phthalocyanine antiscrapie compounds . Science 287, 1503?1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Soto, C. et al. Reversion of prion protein conformational changes by synthetic β-sheet breaker peptides. Lancet 355, 192? 197 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Aguzzi, A. & Collinge, J. Post-exposure prophylaxis after accidental prion inoculation. Lancet 350, 1519?1520 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381?383 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  84. Sparrer, H. E., Santoso, A., Szoka, F. C. Jr, & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro- converted Sup35 protein. Science 289, 595?599 ( 2000).In this paper, yeast geneticists have achieved what continues to be a Holy Grail for mammalian prion science: de novo generation of recombinant, infectious prions.

    Article  CAS  PubMed  Google Scholar 

  85. Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C. & Wickner, R. B. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339?1343 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae Science 264, 566? 569 (1994). The first suggestion that prions exist in yeast.

    Article  CAS  PubMed  Google Scholar 

  87. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477?483 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Hope, J. Spongiform encephalopathies. Breech?birth prions. Nature 402, 737?739 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  89. Shmerling, D. et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203?214 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Moore, R. C. et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP?like protein doppel. J. Mol. Biol. 292, 797?817 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Endras, R. et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin β receptor by radioresistant stromal cells and of lymphotoxin β and tumor necrosis factor by B cells. J. Exp. Med. 189, 159?167 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Chesebro, V. Lingappa, and B. Caughey for critical reading. The work of our laboratory is supported by the Kanton of Zürich, the Bundesämter für Gesundheit, Veterinärwesen, Bildung und Wissenschaft, by grants of the Swiss Nationalfonds, and by the companies Baxter, Abbott, Migros and Coop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Aguzzi.

Related links

Related links

DATABASE LINKS

Creutzfeldt-Jakob disease

PrP

Gerstmann-Sträussler-Scheinker syndrome

HIV

TNFR1

TNF-α

lymphotoxin-β

lymphotoxin-β receptor

Sup35

Ure2p

PRNP

FURTHER INFORMATION

World Organization for Animal Health

The Official Mad Cow Disease Home Page

Department of Health CJD page

ENCYCLOPEDIA OF LIFE SCIENCES

Amyloidosis

Glossary

EPIZOOTIC

Refers to a disease that is temporally prevalent and widespread in a population of animals.

PRION-ONLY HYPOTHESIS

States that the prion is devoid of informational nucleic acid and consists of protein (or glycoprotein) as its essential pathogenic component.

PRPSC OR PRP-RES

An 'abnormal' form of the mature Prnp gene product found in tissue of transmissable spongiform encephalopathy sufferers, operationally defined as being partly resistant to proteinase K digestion under defined reaction conditions. It is believed to differ from PrPC only (or mainly) conformationally, and is rich in β-sheet structure. Within the framework of the protein-only hypothesis it is often considered to be the transmissible agent or prion.

AMYLOID PROTEINS

A term introduced by Rudolf Virchow a century ago to designate proteins that show birefringence under polarized light when stained with Congo red. A more modern concept defines amyloids as proteins that attain their energy minimum in a highly ordered, aggregated state.

PRPC OR PRP-SEN

The naturally occurring form of the mature Prnp gene product.

GERMINAL CENTRES

Specialized areas of lymphoid organs that are important for affinity maturation of B cells.

PRION STRAINS

Prion strains have different phenotypes ? for example, incubation times, distribution of lesions in the brain, relative abundance of mono-, di- and unglycosylated PrPSc, and electrophoretic mobility of the protease-resistant part of PrPSc. But they can all be propagated in the same inbred mouse strain, indicating that, within the framework of the protein-only hypothesis, the same polypeptide chain can mediate different strain phenotypes.

IATROGENIC

Caused by medical treatment.

THALAMUS

A conglomerate of neuronal groups in the diencephalon.

CORTICAL CEREBRAL RIBBON

The grey matter located underneath the surface of the brain.

FLORID PLAQUES

Deposits of prion protein surrounded by a rim of vacuolated brain tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguzzi, A., Montrasio, F. & Kaeser, P. Prions: health scare and biological challenge. Nat Rev Mol Cell Biol 2, 118–126 (2001). https://doi.org/10.1038/35052063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing