Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mobile elements and the human genome

Genomic DNA is often thought of as the stable template of heredity, largely dormant and unchanging, apart from perhaps the occasional point mutation. But it has become increasingly clear that DNA is dynamic rather than static, being subjected to rearrangements, insertions and deletions. Much of this plasticity can be attributed to transposable elements and their genomic relatives.

Key Points

  • Transposable elements can be divided into two broad classes: DNA transposons and retrotransposons, according to their mechanism of action.

  • Transposable elements can also be thought of in terms of their degree of mechanistic self-sufficiency, ranging from 'autonomous' transposons (for example, L1 retrotransposons) to passenger-like sequences that are incapable of self-mobilization (for example, Alu elements).

  • It is estimated that 42% of the mass of the human genome consists of transposable element sequences. L1 sequences alone comprise 15–17% of the mass human DNA.

  • Nearly all transposon sequences in the human genome are non-functional and immobile, prompting the term 'junk' DNA. One exception to this is the L1 retrotransposon, of which there are roughly 40–60 active copies per diploid genome.

  • Transposons and transposon sequences can contribute to genome plasticity through various mechanisms, including insertion, transduction of 3′ flanking sequences and recombination.

  • The human genome may have co-opted transposable element functions for important functions such as immune defence (for example, V(D)J recombination).

  • Telomerase is an enzyme that maintains chromosome ends and may have its origins in the reverse transcriptase of a non-LTR retrotransposon.

  • Self-splicing group II introns may have given rise to modern-day spliceosomal introns.

  • Various mechanisms could function to protect the genome from excessive transposon and retrotransposon activity. These include: methylation, RNA interference, co-suppression and restricted developmental or tissue-specific expression.

  • Transposons can be used in phylogenetic studies and as reagents in molecular biology.

  • Transposons may ultimately be applied to gene delivery and insertional mutagenesis in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of transposable element types.
Figure 2: Target-primed reverse transcription (TPRT).
Figure 3: Transposon genome-shaping pathways.
Figure 4: V(D)J recombination.
Figure 5: Retrohoming.

References

  1. Smit, A. F. A. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9, 657– 663 (1999).A learned and up-to-date review of transposable elements and their remnants in mammalian genomes.

    CAS  PubMed  Google Scholar 

  2. Sassaman, D. M., Dombroski, B. A., Moran, J. V. et al. Many human L1 elements are capable of retrotransposition. Nature Genet. 16, 37–43 (1997).

    CAS  PubMed  Google Scholar 

  3. DeBerardinis, R., Goodier, J., Ostertag, E. & Kazazian, H. H. . Rapid amplification of a retrotransposon subfamily is evolving the mouse genome . Nature Genet. 20, 288– 290 (1998).

    CAS  PubMed  Google Scholar 

  4. Skowronski, J., Fanning, T. G. & Singer, M. F. Unit length LINE-1 transcripts in human teratocarcinoma cells. Mol. Cell. Biol. 8, 1385– 1397 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    CAS  PubMed  Google Scholar 

  6. Yang, J., Malik, H. S. & Eickbush, T. H. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl Acad. Sci. USA 96, 7847–7852 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng, Q., Moran, J. V., Kazazian, H. H. & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition . Cell 87, 905–916 (1996).This study provides the first conclusive evidence that non-LTR retrotransposons contain an endonuclease activity that is critical for their retrotransposition.

    CAS  PubMed  Google Scholar 

  8. Jurka, J. & Klonowski, P. Integration of retroposable elements in mammals: selection of target sites. J. Mol. Evol. 43, 685–689 (1996).

    CAS  PubMed  Google Scholar 

  9. Martin, F. C., Maranon, C., Olivares, M., Alonso, C. & Lopez, M. C. Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the Ape family of DNA repair enzymes. J. Mol. Biol. 247, 49–59 (1995).

    CAS  PubMed  Google Scholar 

  10. Cost, G. J. & Boeke, J. D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37, 18081–18093 (1998).

    CAS  PubMed  Google Scholar 

  11. Kazazian, H. H. & Moran, J. V. The impact of L1 retrotranpsosons on the human genome. Nature Genet. 19, 19–20 (1998).

    CAS  PubMed  Google Scholar 

  12. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 ( 1999).Use of a cultured-cell assay to show that L1s insert into transcribed genes and can retrotranspose sequences derived from their 3′ flanks to new genomic locations.

    CAS  PubMed  Google Scholar 

  13. Malik, H. S., Burke, W. D. & Eickbush, T. H. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16, 793– 805 (1999).A comprehensive phylogenetic analysis of non-LTR retrotransposable elements using an extended reverse transcriptase domain to resolve non-LTR elements into 11 clades.

    CAS  PubMed  Google Scholar 

  14. Eickbush, T. H. Introns gain ground. Nature 404, 940– 943 (2000).

    CAS  PubMed  Google Scholar 

  15. Cousineau, B. et al. Retrotransposition of a bacterial group II intron. Nature 404, 1018–1021 ( 2000).Self–splicing group II introns from bacteria can retrotranspose into ectopic sites, possibly accounting for the genomic dispersal of spliceosomal introns.

    CAS  PubMed  Google Scholar 

  16. Cousineau, B. et al. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94, 451–462 ( 1998).

    CAS  PubMed  Google Scholar 

  17. Zimmerly, S., Guo, H., Perlman, P. S. & Lambowitz, A. M. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82, 545–554 ( 1995).

    CAS  PubMed  Google Scholar 

  18. Heidmann, O. & Heidmann, T. Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64, 159–170 (1991).

    CAS  PubMed  Google Scholar 

  19. Fehrmann, F., Welker, R. & Krausslich, H.-G. Intracisternal A-type particles express their proteinase in a separate reading frame by translational frame-shifting, similar to D-type retroviruses. Virology 235, 352– 359 (1997).

    CAS  PubMed  Google Scholar 

  20. Boeke, J. D. & Stoye, J. P. in Retroviruses (eds Coffin, J. M., Hughes, S. H. & H. E. Varmus, H. E.) 343– 436 (Cold Spring Harbor, New York, 1997).

    Google Scholar 

  21. Lower, R., Lower, J. & Kurth, R. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl Acad. Sci. USA 93, 5177–5184 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goedert, J. J. et al. High prevalence of antibodies against HERV-K10 in patients with testicular cancer but not with AIDS. Ca. Epid. Biomarkers Prev. 8, 293–296 ( 1999).

    CAS  Google Scholar 

  23. Mueller-Lantzsch, N., Sauter, M., Weiskircher, A., Kramer, K., Best B. & Grasser, F. Human endogenous retroviral element K10 (HERV-K10) encodes a full length gag homologous 73 kDa protein and a functional protease . AIDS Res. Hum. Retroviruses 9, 343– 350 (1993).

    CAS  PubMed  Google Scholar 

  24. Kitamura, Y., Ayukawa, T., Ishikawa, T., Kanda, T. & Yoshiike, K. Human endogenous retrovirus K10 encodes a functional integrase. J. Virol. 70, 3302–3306 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Berkhout, B., Jebbink, M. & Zsiros, J. Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J. Virol. 73, 2365–2375 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayer, J. et al. An almost-intact human endogenous retrovirus K on human chromosome 7. Nature Genet. 21, 257– 258 (1999).A cosmid clone was isolated from human chromosome 7, which contained a full-length HERV–K provirus with intact open reading frames for all of the retroviral genes. On the basis of sequence differences in the LTRs, the provirus may have integrated as recently as 1.2 million years ago.

    CAS  PubMed  Google Scholar 

  27. Mayer, J., Meese, E. & Mueller-Laztsch, N. M. Human endogenous retrovirus K homologous sequences and their coding capacity in old world primates. J. Virol. 72, 1870–1875 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barbulescu, M. et al. Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr. Biol. 9, 861– 868 (1999).

    CAS  PubMed  Google Scholar 

  29. Medstrand, P. & Mager, D. Human-specific integrations of the HERV-K endogenous retrovirus family. J. Virol. 72, 9782–9787 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tchenio, T. & Heidmann, T. Defective retroviruses can disperse in the human genome by intracellular transposition. J. Virol. 55, 2113–2118 (1991).

    Google Scholar 

  31. Itin, A. & Keshet, E. Apparent recombinants between virus-like (VL30) and murine leukemia virus-related sequences in mouse DNA. J. Virol. 47, 178–184 ( 1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Moon, B. C. & Friedman, J. M. The molecular basis of the obese mutation in ob2J mice. Genomics 42, 152– 156 (1997).

    CAS  PubMed  Google Scholar 

  33. Mager, D. L. & Freeman, J. D. Novel mouse type D endogenous proviruses and Etn elements share long terminal repeat and internal sequences . J. Virol. 74, 7221–7229 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hattori, M. et al. The DNA sequence of human chromosome 21. Nature 405, 311–319 ( 2000).

    CAS  PubMed  Google Scholar 

  35. Smit, A. F. & Riggs, A. D. Tiggers and DNA transposon fossils in the human genome. Proc. Natl Acad. Sci. USA 20, 1443–1448 (1996).

    Google Scholar 

  36. Plasterk, R. H. A., Izsvak, Z. & Ivics, Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326– 332 (1999).

    CAS  PubMed  Google Scholar 

  37. Oosumi, T., Balknap, W. R. & Garlick, B. Mariner transposons in humans. Nature 378, 672 (1995).

    CAS  PubMed  Google Scholar 

  38. Ivics, Z., Hackett, P. B., Plasterk, R. H. & Izsvak, Z. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).Construction of a synthetic Tc1-like DNA transposon ( Sleeping Beauty ) using parts of transposons from eight different species of fish. Sleeping Beauty was able to mediate cut-and-paste transpositions in fish, mouse and human cells.

    CAS  PubMed  Google Scholar 

  39. Gueiros-Filho, F. J. & Beverley, S. M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 276, 1716– 1719 (1997).

    CAS  PubMed  Google Scholar 

  40. Schouten, G. J., van Luenen, H. G. A. M., Nerra, N. C. V., Valerio, D. & Plasterk, R. H. A. Transposon Tc1 of the nematode Caenorhabditis elegans jumps in human cells. Nucleic Acids Res. 12, 3013–3017 ( 1998).

    Google Scholar 

  41. Fugmann, S. D., Lee, A. I., Shockett, P. E., Villey, I. J. & Schatz, D. G. The RAG proteins and V(D)J recombination: complexes, ends and transposition. Annu. Rev. Immunol. 18, 495–527 (2000).

    CAS  PubMed  Google Scholar 

  42. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 ( 1990).

    CAS  PubMed  Google Scholar 

  43. Dreyfus, D. H. et al. Epstein Barr virus infection of T cells: implications for altered T-lymphocyte activation, repertoire development and autoimmunity. Immunol. Rev. 152, 89–110 (1996).

    CAS  PubMed  Google Scholar 

  44. Schmid, C. W. Does SINE evolution preclude Alu function? Nucleic Acids Res. 26, 4541–4550 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Deininger, P. L. & Batzer, M. A. Minireview: Alu repeats and human disease. Mol. Gen. Metab. 67, 183–193 (1999).

    CAS  Google Scholar 

  46. Branciforte, D. & Martin, S. L. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14, 2584–2592 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Smit, A. F., Toth, G., Riggs, A. D. & Jurka, J. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 246, 401–417 (1995).

    CAS  PubMed  Google Scholar 

  48. Kapitonov, V. & Jurka, J. The age of Alu subfamilies. J. Mol. Evol. 42, 59–65 (1996).

    CAS  PubMed  Google Scholar 

  49. Ogiwara, I., Miya, M., Ohshima, K. & Okada, N. Retropositional parasitism of SINEs and LINEs in Elasmobranchs. Mol. Biol. Evol. 16, 1238–1250 ( 1999).

    CAS  PubMed  Google Scholar 

  50. Okada, N., Hamada, M., Ogiwara, I. & Ohshima, K. SINEs and LINEs share common 3′ sequences: a review. Gene 205 , 229–243 (1997).

    CAS  PubMed  Google Scholar 

  51. Chu, W. M., Ballard, R., Carpick, B. W., Williams, B. R. & Schmid, C. W. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR Mol. Cell. Biol. 18, 58–68 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Boeke, J. D. LINEs and Alus — the polyA connection. Nature Genet. 16, 6–7 (1997).

    CAS  PubMed  Google Scholar 

  53. Chang, D. Y. et al. A human Alu RNA-binding protein whose expression is associated with the accumulation of small cytoplasmic Alu RNA. Mol. Cell. Biol. 14, 3949–3959 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Maestre, J., Tchenio, T., Dhellin, O. & Heidmann, T. mRNA retrotransposition in human cells: processed pseudogene formation. EMBO J. 14, 6333–6338 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dunham, I. et al. The DNA sequence of chromosome 22. Nature 402, 489–495 (2000).

    Google Scholar 

  56. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes . Nature Genet. 24, 363– 367 (2000).

    CAS  PubMed  Google Scholar 

  57. Kazazian, H. H. et al. Haemophilia A resulting from the de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 ( 1988).

    CAS  PubMed  Google Scholar 

  58. Dombrowski, B. A., Mathias, S. L., Nanthakumar, E., Scott, A. F. & Kazazian, H. H. Isolation of an active human retrotransposable element. Science 254, 1805–1808 (1991).

    Google Scholar 

  59. Holmes, S. E., Dombroski, B. A., Krebs, C. M., Boehm, C. D. & Kazazian, H. H. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion . Nature Genet. 17, 143– 148 (1994).

    Google Scholar 

  60. Narita, N. et al. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J. Clin. Invest. 91, 1862–1867 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwahn, U. et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nature Genet. 19, 327– 332 (1998).

    CAS  PubMed  Google Scholar 

  62. Divoky, V. et al. A novel mechanism of β–thalassemia. The insertion of L1 retrotransposable element into β globin IVSII. Blood 88, 148a (1996) .

    Google Scholar 

  63. Kimberland, M. L. et al. Full-length human L1 insertions retain the capacity for high-frequency retrotransposition in cultured cells. Hum. Mol. Genet. 8, 1557–1560 (1999).

    CAS  PubMed  Google Scholar 

  64. Meischl, C., de Boer, M., Ahlin, A. & Roos, D. Intronic insertion of a LINE–1 fragment as the cause of chronic granulomatous disease. Eur. J. Hum. Genet. 8,697–703 (2000).

    CAS  PubMed  Google Scholar 

  65. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992).

    CAS  PubMed  Google Scholar 

  66. Bailey, J. A., Carrel, L., Chakravarti, A. & Eichler, E. E. Molecular evidence for a relationship between LINE-1 elements and X-chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl Acad. Sci. 97, 6634–6639 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lyon, M. F. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80, 133–137 ( 1998).

    CAS  PubMed  Google Scholar 

  68. Kazazian, H. H. An estimated frequency of endogenous insertional mutations in humans. Nature Genet. 22, 130 (1999).

    CAS  PubMed  Google Scholar 

  69. Vansant, G. & Reynolds, W. F. The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc. Natl Acad. Sci. USA 92, 8229– 8233 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Britten, R. J. Mobile elements inserted in the distant past have taken on important functions . Gene 205, 177–182 (1997).

    CAS  PubMed  Google Scholar 

  71. Hewitt, S. M., Fraizer, G. C. & Saunders, G. F. Transcriptional silencer of the Wilms tumor gene WT1 contains an Alu repeat. J. Biol. Chem. 270, 17908–17912 (1995).

    CAS  PubMed  Google Scholar 

  72. Yang, Z., Boffelli, D., Boonmark, N., Schwartz, K. & Lawn, R. Apolipoprotein (a) gene enhancer resides within a LINE element. J. Biol. Chem. 273, 891–897 (1998).

    CAS  PubMed  Google Scholar 

  73. Domansky, A. N. et al. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472, 191–195 ( 2000).

    CAS  PubMed  Google Scholar 

  74. Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Transduction of 3′ flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9, 653–657 (2000).

    CAS  PubMed  Google Scholar 

  75. Pickeral, O. K., Makalowski, W., Boguski, M. S. & Boeke, J. D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition . Genet. Res. 10, 411–415 (2000).

    CAS  Google Scholar 

  76. Burwinkel, B. & Kilimann, M. W. Unequal homologous recombination between LINE1 elements as a mutational mechanism in human genetic disease . J. Mol. Biol. 277, 513– 517 (1998).

    CAS  PubMed  Google Scholar 

  77. Segal, Y. et al. LINE-1 elements at the sites of molecular rearrangements in Alport Syndrome-diffuse leiomyomatosis. Am. J. Hum. Genet. 64, 62–69 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rudiger, N. S., Gregersen, N. & Kielland-Brandt, M. C. One short well conserved region of Alu sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 23, 256– 260 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Reiter, L. T. et al. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-line element. Nature Genet. 12, 288–297 (1996).

    CAS  PubMed  Google Scholar 

  80. Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. Sequences at the somatic recombination sites of immunoglobulin light chain genes. Nature 280, 288–294 ( 1979).

    CAS  PubMed  Google Scholar 

  81. Kennedy, A. K., Guhathakurta, A., Kleckner, N. & Harriford, D. B. Tn10 transposition via a DNA hairpin intermediate. Cell 95, 125–134 (1998).

    CAS  PubMed  Google Scholar 

  82. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    CAS  PubMed  Google Scholar 

  83. Melek, M., Gellert, M. & van Gent, D. C. Rejoining of DNA by the RAG1 and RAG2 proteins. Science 280, 301–303 ( 1998).Reference 82 and 83 show that the RAG1 and RAG2 proteins, together, form a DNA transposase which can excise a piece of DNA flanked by recombination signal sequences and move it to another DNA molecule.

    CAS  PubMed  Google Scholar 

  84. van Gent, D. C., Mizuuchi, K. & Gellert, M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271, 1592–1594 (1996).

    CAS  PubMed  Google Scholar 

  85. Thompson, C. B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531– 539 (1995).

    CAS  PubMed  Google Scholar 

  86. Moore, J. K. & Haber, J. E. Capture of retrotransposon DNA at the sites of chromosomal double strand breaks. Nature 383, 644–646 (1996).

    PubMed  Google Scholar 

  87. Yu, X. & Gabriel, A. Patching broken chromosomes with extranuclear cellular DNA. Mol. Cell 4, 873–881 (1999).

    CAS  PubMed  Google Scholar 

  88. Teng, S.-C., Kim, B. & Gabriel, A. Retrotransposon reverse-transcriptase mediated repair of chromosomal breaks. Nature 383, 641– 644 (1996).

    PubMed  Google Scholar 

  89. Hiom, K., Melek, M. & Gellert, M. DNA Transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    CAS  PubMed  Google Scholar 

  90. Tchenio, T., Casella, J.-F. & Heidmann, T. Members of the SRY family regulate the human LINE retrotransposons . Nucleic Acids Res. 28, 411– 415 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bender, J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem. Sci. 23, 252– 256 (1998).

    CAS  PubMed  Google Scholar 

  92. Bestor, T. H. & Tycko, B. Creation of genomic methylation patterns . Nature Genet. 12, 363– 367 (1996).

    CAS  PubMed  Google Scholar 

  93. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet. 20, 116–117 (1998).

    CAS  PubMed  Google Scholar 

  94. Woodcock, D. M., Lawler, C. B., Linsenmeyer, M. E., Doherty, J. P. & Warren, W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J. Biol. Chem. 272, 7810–7816 (1997).

    CAS  PubMed  Google Scholar 

  95. Simmen, M. W. et al. Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283, 1164– 1167 (1999).

    CAS  PubMed  Google Scholar 

  96. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335– 340 (1997).

    CAS  PubMed  Google Scholar 

  97. Regev, A., Lamb, M. J. & Jablonka, E. The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol. Biol. Evol. 15, 880–891 (1998).

    CAS  Google Scholar 

  98. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).Double-stranded RNA injected into C. elegans can specifically interfere with expression of the corresponding endogenous gene in injected animals and their progeny.

    CAS  PubMed  Google Scholar 

  99. Ketting, R. F., Haverkamp, T. H. A., van Luenen, H. G. A. M. & Plasterk, R. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 ( 1999).This elegant study provides genetic evidence that links activation of the Tc1 transposon to resistance to RNA interference in some strains of C. elegans. One of the mutated genes in the interference-resistant strains of worms, mut–7 , was found to encode a protein with homology to RNaseD, which, in turn, may be involved in the negative regulation of transposable elements.

    CAS  PubMed  Google Scholar 

  100. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123– 132 (1999).

    CAS  PubMed  Google Scholar 

  101. Chaboissier, M. C., Bucheton, A. & Finnegan, D. J. Copy number control of a transposable element, the I-factor, a LINE-like element in Drosophila. Proc. Natl Acad. Sci. USA 95, 11781–11785 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jensen, S., Gassama, M. P. & Heidmann, T. Taming of transposable elements by homology-dependent gene silencing. Nature Genet. 21, 209– 212 (1999).

    CAS  PubMed  Google Scholar 

  103. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955– 959 (1997).

    CAS  PubMed  Google Scholar 

  104. Eickbush, T. H. The Evolutionary Biology of Viruses (ed. Morse, S. S.) 121– 157 (Raven, New York, 1994).

    Google Scholar 

  105. Nakamura, T. M. & Cech, T. R. Reversing time: origin of telomerase. Cell 92, 587– 590 (1998).

    CAS  PubMed  Google Scholar 

  106. Eickbush, T. H. Telomerase and retrotransposons: which came first? Science 277, 911–912 (1997). This paper describes the evolutionary relationships among various transposable elements containing reverse transcriptase and telomerase, which has sequence and functional similarity to reverse transcriptase. One possible phylogenetic tree gives non-LTR retrotransposons the most ancient RTs and predicts that the RT of one of these older parasites may have been recruited (subsequently evolving into telomerase) to maintain chromosomes ends).

    CAS  PubMed  Google Scholar 

  107. Sharp, P. Five easy pieces. Science 254, 663 (1991).

    CAS  PubMed  Google Scholar 

  108. Boissinot, S. Chevret, P. & Furano, A. V. L1 (LINE-1) retrotransposition evolution and amplification in recent human history. Mol. Biol. Evol. 17, 915–928 (2000).

    CAS  PubMed  Google Scholar 

  109. Batzer, M. A. et al. Standardized nomenclature for Alu repeats. J. Mol. Evol. 42, 3–6 ( 1996).

    CAS  PubMed  Google Scholar 

  110. Shimamura, M. et al. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388, 666–670 (1997).

    CAS  PubMed  Google Scholar 

  111. York, D., Welch, K., Goryshin, I. Y. & Reznikoff, W. S. Simple and efficient generation of in vitro nested deletions and inversions: Tn5 intramolecular transposition. Nucleic Acids Res. 26, 1927–1933 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hoffman, L. M. & Loomis, K. B. Protein modification using the new EZ:TN™ in-frame linker insertion kit. Epicentre Forum 7, 4–6 ( 2000).

    Google Scholar 

  113. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95, 10769–10773 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Garrick, D., Fiering, S., Martin, D. I. K. & Whitelaw, E. Repeat-induced gene silencing in mammals. Nature Genet. 18, 56–59 (1998).

    CAS  PubMed  Google Scholar 

  115. Yant, S. R. et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nature Genet. 25, 35–41 ( 2000).The first use of a transposable element as a gene delivery vehicle in mice. The authors show that the Sleeping Beauty DNA transposon can insert the factor IX gene into chromosomal DNA by transposition. Some of the haemophilic mice that received factor IX–transposon DNA expressed therapeutic levels of factor IX for over five months.

    CAS  PubMed  Google Scholar 

  116. Moran, J. V., Zimmerly, S., Eskes, R., Kennell, J. C. & Lambowitz, A. M. Mobile group II introns of yeast mitochondrial DNA are novel, site-specific retroelements. Mol. Cell. Biol. 15, 2829–2838 (1995).

    Google Scholar 

  117. Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457 (2000).

    CAS  PubMed  Google Scholar 

  118. Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells . Cell 87, 917–927 (1996).The first demonstration that cloned human L1 elements can actively retrotranspose at high frequencies in cultured mammalian cells.

    CAS  PubMed  Google Scholar 

  119. Mathias, S. L., Scott, A. F., Kazazian H. H., Boeke, J. D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    CAS  PubMed  Google Scholar 

  120. Clements, A. P. & Singer, M. F. The human LINE-1 reverse transcriptase: effects of deletions outside the common reverse transcriptase domain. Nucleic Acids Res. 26, 3528– 3535 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dombroski, B. A. et al. An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Sacchar-omyces cerevisiae. Mol. Cell. Biol. 14, 4485–4492 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hohjoh, H. & Singer, M. F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15, 630–639 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hohjoh, H. & Singer, M. F. Sequence-specific single strand RNA binding protein encoded by the human LINE–1 retrotransposon. EMBO J. 16, 6034–6043 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to the reviewers and to J. Mayer, J. Moran, M. Carmen Seleme and E. Ostertag for their thoughtful comments on the manuscript. E.L.P. is supported by a grant from the National Cancer Institute and H.H.K. is supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

copia

PRKR

factor VIII

haemophilia A

Duchenne muscular dystrophy

type 2 retinitis pigmentosa

β-thalassaemia

chronic granulomatous disease

APC

Wilms tumour suppressor gene

dystrophin

CMT

HNPP

PMP22

RAG2

RAG1

RAG2

SRY family

factor IX

CCR5

FURTHER INFORMATION

Table with human retrotransposon insertions

RepBase

Transposon DNA database at the Pasteur Institute

Infobiogen

RepeatMaker

Clustal W

GCG

BLAST

ENCYCLOPEDIA OF LIFE SCIENCES

DNA transposition: classes and mechanisms

Genome organization/ human

Developmentally programmed DNA rearrangements

Repetitive DNA: evolution

Glossary

RETROTRANSPOSITION

The process of mobilizing a retrotransposon. It involves transcription, processing of the RNA, translation, reverse transcription of the transposon RNA, and integration of the reverse transcribed DNA into a new genomic location.

LONG TERMINAL REPEATS (LTRs)

Sequences of 300–1,000 base pairs that are directly repeated at the 5′ and 3′ ends of LTR retrotransposons and retroviruses. Because of the mechanism of reverse transcription, the 5′ and 3′ LTRs of an element or retrovirus are identical on insertion into new genomic sites.

V(D)J RECOMBINATION

Site-directed DNA recombination carried out by RAG1 and RAG2 to create an enormous diversity of immunoglobulins and T-cell receptors.

TELOMERASE

A ribonucleoprotein enzyme with significant sequence similarity to reverse transcriptase of non-LTR retrotransposons. Telomerase maintains the ends of chromosomes and is expressed at increased levels in some transformed cells.

5′ TRUNCATION

Loss of the 5′ end of a retrotransposon (very common with L1 retrotransposition) upon insertion into a new genomic site.

TA SUBSET

A minor class of transcribed human L1 retrotransposons that has given rise to most cloned de novo L1 insertions.

REVERSE TRANSCRIPTASE

Enzyme used by retroviruses and retrotransposons to synthesize DNA from an RNA template.

GROUP II INTRON

A self-splicing intron of bacteria, mitochondria and chloroplasts that can excise from a specific site in a gene and insert into a specific site in another gene using activities encoded within its DNA.

INTRACISTERNAL A PARTICLE (IAP)

An LTR-containing retrotransposon of mice that resembles a retrovirus but has a defective env gene.

TRANSLATIONAL FRAMESHIFTING

Some viruses and transposable elements have sequences that can be read in more than one frame by the host cell ribosomes. Specific RNA sequences promote ribosomal slippage, facilitating the shift to a different reading frame.

PRIMER-BINDING SITE

Retroviral reverse transcriptase uses a transfer RNA primer to initiate DNA synthesis. The binding site for this tRNA is located near the 5′ end of the retroviral genome.

HOMINOIDS

A superfamily of the order Primates, comprising man and the anthropoid apes.

RECOMBINASE ACTIVATING GENE (RAG)

Encodes RAG proteins that facilitate the DNA rearrangements that result in the assembly of immunoglobulin and T-cell receptor genes from various gene segments.

PROCESSED PSEUDOGENES

Copies of the coding sequences of genes that lack promoters and introns. They contain poly A tails and are flanked by target-site duplications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luning Prak, E., Kazazian, H. Mobile elements and the human genome. Nat Rev Genet 1, 134–144 (2000). https://doi.org/10.1038/35038572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing