Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colloidal ordering from phase separation in a liquid- crystalline continuous phase

Abstract

Some binary mixtures exist as a single phase at high temperatures and as two phases at lower temperatures; rapid cooling therefore induces phase separation that proceeds through the initial formation of small particles and subsequent growth and coarsening1. In solid and liquid media, this process leads to growing particles with a range of sizes, which eventually separate to form a macroscopically distinct phase. Such behaviour is of particular interest in systems composed of an isotropic fluid and a liquid crystal2, where the random distribution of liquid-crystal droplets in an isotropic polymer matrix may give rise to interesting electro-optical properties. Here we report that a binary mixture consisting of an isotropic fluid and a liquid crystal forming the continuous phase does not fully separate into two phases, but self-organizes into highly ordered arrays of monodisperse colloidal droplet chains. We find that the size and spatial organization of the droplets are controlled by the orientational elasticity of the liquid-crystal phase and the defects caused by droplets exceeding a critical size. We expect that our approach to forming monodisperse, spatially ordered droplets in liquid crystals will allow the controlled design of ordered composites that may have useful rheological and optical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of the mixture of liquid crystal and silicone oil.
Figure 2: The phase separation process in a liquid-crystalline fluid.
Figure 3: Very long chains are obtained at long times.
Figure 4: Schematic diagram of the distortions around particles in nematic liquid crystal.

Similar content being viewed by others

References

  1. Gunton, J. M., San Miguel, M. & Sahni, P. S. in Phase Transition and Critical Phenomena Vol. 8 (ed. Lebowitz, J. L.) 267 (Academic, London, 1983).

    Google Scholar 

  2. Drzaic, P. Liquid Crystal Dispersions (Series on Liquid Crystals Vol. 1, World Scientific, Singapore, 1995).

    Book  Google Scholar 

  3. Benmouna, F., Bedjaoui, L., Maschke, U., Coqueret, X. & Benmouna, M. On the phase behavior of blends of polymers and nematic liquid crystals. Macromol. Theory Simul. 7, 599–611 ( 1998).

    Article  CAS  Google Scholar 

  4. Shen, C. & Kyu, T. Spinodals in a polymer dispersed liquid crystal. J. Chem. Phys. 102, 556– 562 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Yurke, B., Pargellis, A. N., Chuang, I. & Turok, N. Coarsening dynamics in nematic liquid crystals. Physica B 178, 56–72 (1992).

    Article  ADS  CAS  Google Scholar 

  6. De Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn (Clarendon, Oxford, 1993).

    Google Scholar 

  7. Poulin, P., Stark, H., Lubensky, T. C. & Weitz, D. A. Novel colloidal interactions in anisotropic fluids. Science 275, 1770–1173 (1997).

    Article  CAS  Google Scholar 

  8. Mondain-Monval, O., Frances, N. & Poulin, P. Weak surface energy in nematic dispersions: Saturn ring defects and quadrupolar interactions. Eur. Phys. J. B 12, 167–170 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Ruhwandl, R. W. & Terentjev, E. M. Monte Carlo simulation of topological defects in the nematic liquid crystal matrix around a spherical colloid particle. Phys. Rev. E 56, 5561–5565 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Stark, H. Director field configurations around a spherical particle in a nematic liquid crystal. Eur. Phys. J. B 10, 311– 321 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Lubensky, T. C., Pettey, D. & Currier, N. Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610–625 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Poulin, P. & Weitz, D. A. Inverted and multiple nematic emulsions. Phys. Rev. E 57, 626–637 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Poulin, P., Cabuil, V. & Weitz, D. A. Direct measurement of colloidal forces in an anisotropic solvent. Phys. Rev. Lett. 79, 4862– 4865 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Lavrentovich, O. D., Nazarenko, V. G., Sergan, V. V. & Durand, G. Dielectric quenching of the electric polar surface instability in a nematic liquid crystal. Phys. Rev. A 45, R6969– R6972 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Halsey, T. C. & Toor, W. Structure of electrorheological fluids. Phys. Rev. Lett. 65, 2820– 2823 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Miyazima, S., Meakin, P. & Family, F. Aggregation of oriented anisotropic particles. Phys. Rev. A 36, 1421–1427 (1987).

    Article  ADS  CAS  Google Scholar 

  17. See, H. & Doi, M. Aggregation kinetics in electrorheological fluids. J. Phys. Soc. Jpn 60, 2778– 2782 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Carmen Miguel, M. & Pastor-Satorras, R. Kinetic growth of field-oriented chains in dipolar colloidal solutions. Phys. Rev. E 59, 826–834 (1999).

    Article  ADS  Google Scholar 

  19. Halsey, T. C. & Toor, W. Fluctuation-induced couplings between defect lines or particle chains. J. Statist. Phys. 61, 1257–1281 (1990).

    Article  ADS  Google Scholar 

  20. Meeker, S. P., Poon, W. C. K., Crain, J. & Terentjev, E. M. Colloid liquid crystal composites: An unusual soft solid. Phys. Rev. E 61, R6083–R6086 ( 2000).

    Article  ADS  CAS  Google Scholar 

  21. Calderon, F. L., Stora, T., Monval, O. M., Poulin, P. & Bibette, J. Direct measurement of colloidal forces. Phys. Rev. Lett. 72, 2959–2962 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Poulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loudet, JC., Barois, P. & Poulin, P. Colloidal ordering from phase separation in a liquid- crystalline continuous phase. Nature 407, 611–613 (2000). https://doi.org/10.1038/35036539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing