Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Liquid crystal phase transitions in suspensions of polydisperse plate-like particles

Abstract

Colloidal suspensions that form periodic self-assembling structures on sub-micrometre scales are of potential technological interest; for example, three-dimensional arrangements of spheres in colloidal crystals1 might serve as photonic materials2, intended to manipulate light. Colloidal particles with non-spherical shapes (such as rods and plates) are of particular interest because of their ability to form liquid crystals. Nematic liquid crystals possess orientational order; smectic and columnar liquid crystals additionally exhibit positional order (in one or two dimensions respectively). However, such positional ordering3,4 may be inhibited in polydisperse colloidal suspensions. Here we describe a suspension of plate-like colloids that shows isotropic, nematic and columnar phases on increasing the particle concentration. We find that the columnar two-dimensional crystal persists for a polydispersity of up to 25%, with a cross-over to smectic-like ordering at very high particle concentrations. Our results imply that liquid crystalline order in synthetic mesoscopic materials may be easier to achieve than previously thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the three main classes of liquid crystals.
Figure 2: Transmission electron microscopy images.
Figure 3: Tubes containing suspensions at varying concentrations.
Figure 4: Phase diagram of the suspensions.
Figure 5: Small angle X-ray scattering patterns for samples varying in polydispersity and volume fraction.

Similar content being viewed by others

References

  1. Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard spheres. Nature 320, 340–342 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers. Nature 405, 437–440 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Pusey, P. N. in Les Houches, Session LI, Liquids, Freezing & Glass Transitions Ch. 10 (North-Holland, Amsterdam, 1991).

    Google Scholar 

  4. Bates, M. & Frenkel, D. Influence of polydispersity on the phase behavior of colloidal liquid crystals: A Monte Carlo study. J. Chem. Phys. 109, 6193–6199 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Bernal, J. D. & Fankuchen, I. X-ray and crystallographic studies of plant virus preparations. J. Gen. Physiol. 25, 111–146 (1941).

    Article  CAS  Google Scholar 

  6. Dogic, Z. & Fraden, S. Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett. 78 , 2417–2420 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Pusey, P. N. The effect of polydispersity on the crystallization of hard spherical colloids. J. Phys. (Paris) 48, 709– 712 (1987).

    Article  CAS  Google Scholar 

  8. Barrat, J. L. & Hansen, J. P. On the stability of polydisperse colloidal crystals. J. Phys. (Paris) 46, 1547–1553 (1986).

    Article  Google Scholar 

  9. McRae, R. & Haymet, A. D. J. Freezing of polydisperse hard spheres. J. Chem. Phys. 88, 1114– 1125 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Bolhuis, P. G. & Kofke, D. A. Monte Carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, 634–643 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Kofke, D. A. & Bolhuis, P. G. Freezing of polydisperse hard spheres. Phys. Rev. E 59, 618– 622 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Frenkel, D., Lekkerkerker, H. N. W. & Stroobants, A. Thermodynamic stability of a smectic phase in a system of hard rods. Nature 332, 822 –823 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Veerman, J. A. C. & Frenkel, D. Phase behavior of disklike hard-core mesogens. Phys. Rev. A 45, 5632–5648 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Livolant, F., Levelut, A. M., Doucet, J. & Benoit, J. P. The concentrated DNA liquid crystalline phase is columnar hexatic. Nature 339, 724–728 ( 1989).

    Article  ADS  CAS  Google Scholar 

  15. van der Kooij, F. M. & Lekkerkerker, H. N. W. Formation of nematic liquid crystals in suspensions of hard colloidal platelets. J. Phys. Chem. B 102, 7829–7832 (1998).

    Article  CAS  Google Scholar 

  16. Brown, A. B. D., Clarke, S. M. & Rennie, A. R. Ordered phase of platelike particles in concentrated dispersions. Langmuir 14, 3129– 3132 (1998).

    Article  CAS  Google Scholar 

  17. Brown, A. B. D., Ferrero, C., Narayanan, T. & Rennie, A. R. Phase separation and structure in a concentrated colloidal dispersion of uniform plates. Eur. Phys. J. B 11, 481– 489 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Onsager, L. The effect of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  ADS  CAS  Google Scholar 

  19. Frenkel, D. & Eppenga, R. Monte Carlo study of the isotropic-nematic transition in a fluid of thin hard disks. Phys. Rev. Lett. 52, 1089–1092 (1982).

    Article  ADS  Google Scholar 

  20. Bates, M. & Frenkel, D. Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets. J. Chem. Phys. 110, 6553–6559 ( 1999).

    Article  ADS  CAS  Google Scholar 

  21. Bates, M. Influence of particle shape on the nematic-isotropic transition of colloidal platelet systems. J. Chem. Phys. 111, 1732 –1736 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Guinier, A. X-ray Diffraction in Crystals, Imperfect Crystals, & Amorphous Bodies 169–172 (Dover, New York, 1994).

    Google Scholar 

  23. van der Kooij, F. M., Philipse, A. P. & Dhont, J. K. G. Sedimentation and diffusion in suspensions of sterically stabilized colloidal platelets. Langmuir 16, 5317–5323 (2000).

    Article  CAS  Google Scholar 

  24. Bibette, JU. Depletion interactions and fractionated crystallisation for polydisperse emulsion purification. J. Colloid Interface Sci. 147, 474–478 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Smits, C., Briels, W. J., Dhont, J. K. G. & Lekkerkerker, H. N. W. Influence of the stabilizing coating on the rate of crystallization of colloidal suspensions. Prog. Colloid Polym. Sci. 79, 287–292 (1989).

    Article  CAS  Google Scholar 

  26. van der Kooij, F. M. & Lekkerkerker, H. N. W. The liquid crystalline phase behaviour of a colloidal rod-plate mixture. Phys. Rev. Lett. 84, 781–784 (2000).

    Article  ADS  CAS  Google Scholar 

  27. van Bruggen, M. P. B., Dhont, J. K. G. & Lekkerkerker, H. N. W. Morphology and kinetics of the isotropic-nematic phase transition in dispersions of hard rods. Macromolecules 32, 2256–2264 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Gitzen, W. H. Alumina as a Ceramic Material 31 (The American Ceramic Society, Columbus, 1970).

    Google Scholar 

Download references

Acknowledgements

We thank A. R. Rennie for discussions concerning the columnar phase, I. Dolbnya and W. Bras for technical support at DUBBLE, and D. Frenkel for a critical reading of the manuscript. This work was supported by the Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for the Advancement of Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk N. W. Lekkerkerker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Kooij, F., Kassapidou, K. & Lekkerkerker, H. Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406, 868–871 (2000). https://doi.org/10.1038/35022535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022535

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing