Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Different initiation of pre-TCR and γδTCR signalling

Abstract

Lineage choice is of great interest in developmental biology. In the immune system, the αβ and γδ lineages of T lymphocytes diverge during the course of the β-, γ- and δ-chain rearrangement of T-cell receptor (TCR) genes that takes place within the same precursor cell and which results in the formation of the γδTCR or pre-TCR proteins1,2,3. The pre-TCR consists of the TCRβ chain covalently linked to the pre-TCRα protein, which is present in immature but not in mature T cells which instead express the TCRα chain4,5. Animals deficient in pre-TCRα have few αβ lineage cells but an increased number of γδ T cells. These γδ T cells exhibit more extensive TCRβ rearrangement than γδ T cells from wild-type mice6,7. These observations are consistent with the idea that different signals emanating from the γδTCR and pre-TCR instruct lineage commitment8. Here we show, by using confocal microscopy and biochemistry to analyse the initiation of signalling, that the pre-TCR but not the γδTCR colocalizes with the p56lck Src kinase into glycolipid-enriched membrane domains (rafts) apparently without any need for ligation. This results in the phosphorylation of CD3ε and Zap-70 signal transducing molecules. The results indicate clear differences between pre-TCR and γδTCR signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the pre-TCR in the cell membrane of thymocytes.
Figure 2: Analysis of the pre-TCR in the cell membrane of SCB.29 cells.
Figure 3: Biochemical analysis of the pre-TCR.
Figure 4: Cell-autonomous pre-TCR signalling in rafts.

Similar content being viewed by others

References

  1. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  2. Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8-triple negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  3. Rodewald, H. R. et al. FcγRII/III and CD2 expression mark distinct subpopulations of immature CD4-8- murine thymocytes: In vivo developmental kinetics and T cell receptor β chain rearrangement status. J. Exp. Med. 177, 1079–1092 (1992).

    Article  Google Scholar 

  4. Groettrup, M. et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 33 kd glycoprotein. Cell 75, 283–294 (1993).

    Article  CAS  Google Scholar 

  5. Saint-Ruf, C. et al. Analysis and expression of a cloned pre-T cell receptor gene. Science 266, 1208—1212 (1994).

    Article  Google Scholar 

  6. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Aifantis, I. et al. On the role of the pre-T cell receptor in αβ versus γδ lineage commitment. Immunity 9, 649–655 (1998).

    Article  CAS  Google Scholar 

  8. von Boehmer, H. et al. Crucial function of the pre-T cell receptor (TCR) in TCRβ selection, TCRβ allelic exclusion and αβ versus γδ lineage commitment. Immunol. Rev. 165, 111–119 (1998).

    Article  CAS  Google Scholar 

  9. Amirand, C. et al. Three distinct sub-nuclear populations of HMG-I protein of different properties revealed by co-localization image analysis. J. Cell Sci. 111, 3551–3561 (1998).

    Article  CAS  Google Scholar 

  10. Janes, P. W., Ley, S. C. & Magee, A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    Article  CAS  Google Scholar 

  11. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  Google Scholar 

  12. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  Google Scholar 

  13. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    Article  CAS  Google Scholar 

  15. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

    Article  CAS  Google Scholar 

  16. Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C. & Lublin, D. M. Cysteine 3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126, 353–363 (1994).

    Article  CAS  Google Scholar 

  17. Rodgers, W., Crise, B. & Rose, J. K. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol. Cell. Biol. 14, 5384–5391 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  Google Scholar 

  19. Sheets, E. D., Holowka, D. & Baird, B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol. 145, 877–887 (1999).

    Article  CAS  Google Scholar 

  20. Anderson, S. J. & Perlmutter, R. M. A signaling pathway governing early thymocyte maturation. Immunol. Today 16, 99–105 (1995).

    Article  CAS  Google Scholar 

  21. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  Google Scholar 

  23. Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4 (1999).

    Article  CAS  Google Scholar 

  24. Del Porto, P., Bruno, L., Mattei, M. G., von Boehmer, H. & Saint-Ruf, C. Cloning and comparative analysis of the human pre-T-cell receptor α-chain gene. Proc. Natl Acad. Sci. USA 92, 12105–12109 (1995).

    Article  ADS  CAS  Google Scholar 

  25. van Oers, N. S., von Boehmer, H. & Weiss, A. The pre-T cell receptor (TCR) complex is functionally coupled to the TCR-ζ subunit. J. Exp. Med. 182, 1585-1590 (1995).

    Article  Google Scholar 

  26. Wange, R. L., Malek, S. N., Desiderio, S. & Samelson, L. E. Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor ζ and CD3ε from activated Jurkat T cells. J. Biol. Chem. 268, 19797–19801 (1993).

    Article  CAS  Google Scholar 

  27. Huby, R. D. J., Iwashima, M., Weiss, A. & Ley, S. C. ZAP-70 protein tyrosine kinase is constitutively targeted to the T cell cortex independently of its SH2 domains. J. Cell Biol. 137, 1639–1649 (1997).

    Article  CAS  Google Scholar 

  28. Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Gunning, P., Leavitt, J., Muscat, G., Ng, S. Y. & Kedes, L. A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl Acad. Sci. USA 84, 4831–4835 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Amirand for advice in quantitative colocalization analysis; J. Feinberg, C. Garcia and I. Aifantis for help in thymocyte analysis; E. Barbier for advice on biochemistry; P. Pereira for γδTCR transgenic mice; and Y. Goureau for assistance in confocal microscopy. We thank E. D. Smith for help with the artwork and L. Holcomb for preparation of the manuscript. H.v.B. is supported by the Koerber Foundation (Germany). F.G. is a recipient of a Biotech grant from European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald von Boehmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-Ruf, C., Panigada, M., Azogui, O. et al. Different initiation of pre-TCR and γδTCR signalling. Nature 406, 524–527 (2000). https://doi.org/10.1038/35020093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020093

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing