Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk

Abstract

Silks are fibrous proteins that form heterogeneous, semi-crystalline solids. Silk proteins have a variety of physical properties reflecting their range of functions. Spider dragline silk, for example, has high tensile strength and elasticity1, whereas other silks2 are better suited to making housing, egg sacs or the capture spiral of spiders' webs. The differing physical properties arise from variation in the protein's primary and secondary structure, and their packing in the solid phase. The high mechanical performance of spider dragline silk, for example, is probably due to a β-sheet conformation of poly-alanine domains3, embedded as small crystallites within the fibre. Only limited structural information can be obtained from diffraction of silks3,4,5,6, so further characterization requires spectroscopic studies such as NMR7,8,9,10,11. However, the classical approach to NMR structure determination12 fails because the high molecular weight13, repetitive primary structure13 and structural heterogeneity of solid silk means that signals from individual amino-acid residues cannot be resolved. Here we adapt a recently developed solid-state NMR technique14,15 to determine torsion angle pairs (φ, Ψ) in the protein backbone, and we study the distribution of conformations in silk from the Eri silkworm, Samia cynthia ricini. Although the most probable conformation in native fibres is an anti-parallel β-sheet, film produced from liquid directly extracted from the silk glands appears to be primarily α-helical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The (φ,ψ)-dependence of DOQSY spectra in the two-spin approximation.
Figure 2: Experimental DOQSY spectra of silk from Samia cynthia ricini silkworms a, b, Spectra for fibre (a) and film (b ) samples.
Figure 3: Probability distribution functions for (φ,ψ) determined from the experimental spectra in Fig. 2 using Tikhonov regularization.

Similar content being viewed by others

References

  1. Denny, M. W. in The Mechanical Properties of Biological Materials, Symposia of Soc. Exp. Biol. Vol. 34 (eds Vincent, J. F. V. & Currey, J. D.) 247–272 (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

  2. Vollrath, F. Spider webs and silks. Sci. Am. 266, 52– 58 (1992).

    Article  Google Scholar 

  3. Yang, Z., Grubb, D. T. & Jelinski, L. W. Small-angle X-ray scattering of spider Dragline silk. Macromolecules 30, 8254– 8261 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Warwicker, J. O. Comparative studies of fibroins II. The crystal structures of various fibroins. J. Mol. Biol. 2, 350–362 (1960)

    Article  CAS  Google Scholar 

  5. Becker, M. A. et al. in Silk Polymers—Material Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B., & Viney, C.) 185 –195 (Am. Chem. Soc., Washington DC, 1994).

    Google Scholar 

  6. Bram, A., Branden, C. I., Craig, C., Snigireva, I. & Riekel, C. X-ray diffraction from single fibers of spider silk. J. Appl. Cryst. 30, 390– 392 (1997).

    Article  CAS  Google Scholar 

  7. Saito, H. et al. High-resolution 13C NMR study of silk fibroin in the solid state by cross-polarization magic-angle spinning method. Conformational characterization of silk I and silk II type forms of Bombyx mori fibroin by the conformational-dependent 13C chemical shifts. Macromolecules 17, 1405–1412 (1984)

    Article  ADS  CAS  Google Scholar 

  8. Simmons, A. H., Michal, C. A. & Jelinski, L. W. Molecular Orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Kümmerlen, J., van Beek, J. D., Vollrath, F. & Meier, B. H. Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29, 2920–2928 (1996).

    Article  ADS  Google Scholar 

  10. Asakura, T., Ito, T., Okudaira, M. & Kameda, T. Structure of alanine and glycine residues of Samia cynthia ricini silk fibers studied with solid-state 15N and 13C NMR. Macromolecules 32, 4940–4946 ( 1999).

    Article  ADS  CAS  Google Scholar 

  11. Ishida, M., Asakura, T., Yokoi, M. & Saito, H. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studies by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules 23, 88–94 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley Interscience, New York, 1986).

    Book  Google Scholar 

  13. Kaplan, D. L., Adams, W. W., Viney, C. & Farmer, B. L. in Silk Polymers—Material Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B. & Viney, C.) 2–16 (Am. Chem. Soc., Washington DC, 1994).

    Google Scholar 

  14. Schmidt-Rohr, K. A double-quantum solid-state NMR technique for determining torsion angles in polymers. Macromolecules 29, 3975– 3981 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Schmidt-Rohr, K., Hu, W. & Zumbulyadis, N. Elucidation of the chain conformation in a glassy polyester, PET, by two-dimensional NMR. Science 280, 714–717 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Ernst, M. & Meier, B. H. in Solid State NMR of Polymers Vol. 84 (eds Ando,I. & Asakura) 183– 121 (Elsevier, Amsterdam, 1998).

    Google Scholar 

  17. Arnott, S., Dover, S. D. & Elliott, A. Structure of β-poly-L-alanine: Refined atomic coordinates for an anti-parallel beta-pleated sheet. J. Mol. Biol. 30, 201—208 (1967)

    Google Scholar 

  18. Heller, J. et al. Determination of dihedral angles in peptides through experimental and theoretical studies of alpha-carbon chemical shielding tensors. J. Am. Chem. Soc. 119, 7827–7831 (1997).

    Article  CAS  Google Scholar 

  19. Antzutkin, O. N. & Tycko, R. High-order multiple quantum excitation in 13C nuclear magnetic resonance spectroscopy of organic solids. J. Chem. Phys. 110, 2749 –2752 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Yen, Y. -S. & Pines, A. Multiple-quantum NMR in solids. J. Chem. Phys. 78, 3579–3582 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 ( 1951).

    Article  ADS  CAS  Google Scholar 

  22. Stark, R. E., Jelinski, L. W., Ruben, D. J., Torchia, D. A. & Griffin, R. G. Carbon-13 chemical shift and carbon-13/nitrogen-15 dipolar tensors for the peptide bond: 1-13C-glycyl-15N- glycine hydrochloride hydrate. J. Magn. Reson. 55, 266–273 (1983).

    ADS  CAS  Google Scholar 

  23. Teng, Q., Iqbal, M. & Cross, T. A. Determination of the 13C chemical shift and 14N electric field gradient orientations with respect to the molecular frame in a polypeptide. J. Am. Chem. Soc. 114, 5312– 5312 (1992).

    Article  CAS  Google Scholar 

  24. Oas, T. G., Hartzell, C. J., McMahon, T. J., Drobny, G. P. & Dahlquist, F. W. The carbonyl carbon-13 chemical shift tensors of five peptides determined from nitrogen-15 dipole- coupled chemical shift powder patterns. J. Am. Chem. Soc. 109 , 5956–5962 (1987).

    Article  CAS  Google Scholar 

  25. Hartzell, C. J., Whitfield, M., Oas, T. G & Drobny, G. P. Determination of the 15N and 13C chemical shift tensors of L-[13C]Alanyl-L-[15N]alanine from the dipole-coupled powder patterns. J. Am. Chem. Soc. 109, 5966–5969 (1987).

    Article  CAS  Google Scholar 

  26. Tikhonov, A. N. & Arsenin, V. Y. Solutions of Ill-Posed Problems. (John Wiley, New York, 1977).

    MATH  Google Scholar 

  27. Schäfer, H., Albrecht, U. & Richert, R. Dispersive first-order reactions I: data analysis. Chem. Phys. 182, 53–60 ( 1994).

    Article  Google Scholar 

  28. Honerkamp, J. & Weese, J. Tikhonovs regularization method for ill-posed problems. Cont. Mech. Thermodyn. 2, 17–30 (1990).

    Article  Google Scholar 

  29. Weese, J. A reliable and fast method for the solution of Fredholm integral equations of the first kind based on Tikhonov regularization. Comput. Phys. Comm. 69, 99–111 ( 1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Swiss National Science Foundation, the European Science Foundation and the Bio-oriented Technology Research Advancement Institution, Japan (T.A.). We thank M. Ernst for experimental advice and R. Verel for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beek, J., Beaulieu, L., Schäfer, H. et al. Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature 405, 1077–1079 (2000). https://doi.org/10.1038/35016625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016625

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing