Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway

Abstract

Protein degradation by the ubiquitin system controls the intracellular concentrations of many regulatory proteins. A protein substrate of the ubiquitin system is conjugated to ubiquitin through the action of three enzymes, E1, E2 and E3, with the degradation signal (degron) of the substrate recognized by E3 (refs 1,2,3). The resulting multi-ubiquitylated substrate is degraded by the 26S proteasome4. Here we describe the physiological regulation of a ubiquitin-dependent pathway through allosteric modulation of its E3 activity by small compounds. Ubr1, the E3 enzyme of the N-end rule pathway (a ubiquitin-dependent proteolytic system) in Saccharomyces cerevisiae mediates the degradation of Cup9, a transcriptional repressor of the peptide transporter Ptr2 (ref. 5). Ubr1 also targets proteins that have destabilizing amino-terminal residues6. We show that the degradation of Cup9 is allosterically activated by dipeptides with destabilizing N-terminal residues. In the resulting positive feedback circuit, imported dipeptides bind to Ubr1 and accelerate the Ubr1-dependent degradation of Cup9, thereby de-repressing the expression of Ptr2 and increasing the cell's capacity to import peptides. These findings identify the physiological rationale for the targeting of Cup9 by Ubr1, and indicate that small compounds may regulate other ubiquitin-dependent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhancement of Cup9 degradation by dipeptides with destabilizing N-terminal residues.
Figure 2: Effects of dipeptides on expression of the dipeptide transporter gene PTR2.
Figure 3: In vitro ubiquitylation of Cup9 is enhanced by dipeptides bearing destabilizing N-terminal residues.
Figure 4: Feedback regulation of peptide import in S. cerevisiae.

Similar content being viewed by others

References

  1. Laney, J. D. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427–430 (1999).

    Article  CAS  Google Scholar 

  2. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 76, 425–479 (1998).

    Article  Google Scholar 

  3. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).

    Article  CAS  Google Scholar 

  4. Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  5. Byrd, C., Turner, G. C. & Varshavsky, A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17, 269–277 (1998).

    Article  CAS  Google Scholar 

  6. Bartel, B., Wünning, I. & Varshavsky, A. The recognition component of the N-end rule pathway. EMBO J. 9, 3179–3189 (1990).

    Article  CAS  Google Scholar 

  7. King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Kotani, S., Tanaka, H., Yasuda, H. & Todokoro, K. Regulation of APC activity by phosphorylation and regulatory factors. J. Cell Biol. 146, 791–800 (1999).

    Article  CAS  Google Scholar 

  9. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    Article  CAS  Google Scholar 

  11. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Xie, Y. M. & Varshavsky, A. The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18, 6832–6844 (1999).

    Article  CAS  Google Scholar 

  13. Dohmen, R. J., Madura, K., Bartel, B. & Varshavsky, A. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc. Natl Acad. Sci. USA 88, 7351–7355 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Reiss, Y., Kaim, D. & Hershko, A. Specificity of binding of N-terminal residues of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J. Biol. Chem. 263, 2693–2269 (1988).

    CAS  PubMed  Google Scholar 

  15. Gonda, D. K. et al. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712 (1989).

    CAS  PubMed  Google Scholar 

  16. Baker, R. T. & Varshavsky, A. Inhibition of the N-end rule pathway in living cells. Proc. Natl Acad. Sci. USA 87, 2374–2378 (1991).

    Google Scholar 

  17. Alagramam, K., Naider, F. & Becker, J. M. A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae. Mol. Microbiol. 15, 225–234 (1995).

    Article  CAS  Google Scholar 

  18. Knight, S. A. B., Tamai, K. T., Kosman, D. J. & Thiele, D. J. Identification and analysis of a Saccharomyces cerevisiae copper homeostasis gene encoding a homeodomain protein. Mol. Cell. Biol. 14, 7792–7804 (1994).

    Article  CAS  Google Scholar 

  19. Wolberger, C., Vershon, A. K., Liu, B. S., Johnson, A. D. & Pabo, C. O. Crystal structure of a Matα-2 homeodomain–operator complex suggests a general model for homeodomain–DNA interactions. Cell 67, 517–528 (1991).

    Article  CAS  Google Scholar 

  20. Lévy, F., Johnsson, N., Rumenapf, T. & Varshavsky, A. Using ubiquitin to follow the metabolic fate of a protein. Proc. Natl Acad. Sci. USA 93, 4907–4912 (1996).

    Article  ADS  Google Scholar 

  21. Suzuki, T. & Varshavsky, A. Degradation signals in the lysine–asparagine sequence space. EMBO J. 18, 6017–6026 (1999).

    Article  CAS  Google Scholar 

  22. Barnes, D., Lai, W., Breslav, M., Naider, F. & Becker, J. M. PTR3, a novel gene mediating amino acid-inducible regulation of peptide transport in Saccharomyces cerevisiae. Mol. Microbiol. 29, 297–310 (1998).

    Article  CAS  Google Scholar 

  23. Kwon, Y. T. et al. The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl Acad. Sci. USA 95, 7898–7903 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Tobias, J. W., Shrader, T. E., Rocap, G. & Varshavsky, A. The N-end rule in bacteria. Science 254, 1374–1377 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Ghislain, M., Dohmen, R. J., Levy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO. J. 15, 4884–4899 (1996).

    Article  CAS  Google Scholar 

  26. Mumberg, D., Muller, R. & Funk, M. Regulatable promoters of Saccharomyces cerevisiae—comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22, 5767–5768 (1994).

    Article  CAS  Google Scholar 

  27. Jones, J. S. & Prakash, L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6, 363–366 (1990).

    Article  CAS  Google Scholar 

  28. Schmitt, M. E., Brown, T. A. & Trumpower, B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092 (1990).

    Article  CAS  Google Scholar 

  29. Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology. (Wiley-Interscience, New York, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank A. Webster for her valuable contributions to establishing the in vitro system, and R. Deshaies, J. Dohmen, L. Prakash, H. Rao and J. Sheng for their gifts of plasmids and strains. We also thank C. Byrd, H. Rao, T. Iverson and especially R. Deshaies for helpful discussions and comments on the manuscript. This work was supported by grants to A.V. from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Varshavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, G., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–583 (2000). https://doi.org/10.1038/35014629

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014629

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing