Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retrotransposition of a bacterial group II intron

A Corrigendum to this article was published on 01 November 2001

Abstract

Self-splicing group II introns may be the evolutionary progenitors of eukaryotic spliceosomal introns1,2,3,4,5,6,7, but the route by which they invade new chromosomal sites is unknown. To address the mechanism by which group II introns are disseminated, we have studied the bacterial Ll.LtrB intron from Lactococcus lactis8. The protein product of this intron, LtrA, possesses maturase, reverse transcriptase and endonuclease enzymatic activities9,10,11. Together with the intron, LtrA forms a ribonucleoprotein (RNP) complex which mediates a process known as retrohoming11. In retrohoming, the intron reverse splices into a cognate intronless DNA site. Integration of a DNA copy of the intron is recombinase independent but requires all three activities of LtrA11. Here we report the first experimental demonstration of a group II intron invading ectopic chromosomal sites, which occurs by a distinct retrotransposition mechanism. This retrotransposition process is endonuclease-independent and recombinase-dependent, and is likely to involve reverse splicing of the intron RNA into cellular RNA targets. These retrotranspositions suggest a mechanism by which splicesomal introns may have become widely dispersed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrohoming and retrotransposition in L. lactis.
Figure 2: Ectopic insertions of Ll.LtrB in the L. lactis chromosome.
Figure 3: Splicing of Ll.LtrB at ectopic sites.
Figure 4: Mobility pathways.

Similar content being viewed by others

References

  1. Jacquier,A. Self-splicing group II and nuclear pre-mRNA introns: how similar are they? Trends Biochem. Sci. 15, 351– 354 (1990).

    Article  CAS  Google Scholar 

  2. Sharp,P. A. Five easy pieces. Science 254, 663 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Cavalier-Smith,T. Intron phylogeny: a new hypothesis. Trends Genet. 7 , 145–148 (1991).

    Article  CAS  Google Scholar 

  4. Roger,A. J. & Doolittle,W. F. Why introns-in-pieces? Nature 364, 289–290 ( 1993).

    Article  ADS  CAS  Google Scholar 

  5. Weiner,A. M. mRNA splicing and autocatalytic introns: distant cousins or the products of chemical determinism? Cell 72, 161– 164 (1993).

    Article  CAS  Google Scholar 

  6. Michel,F. & Ferat,J. Structure and activities of group II introns. Annu. Rev. Biochem. 64, 435– 461 (1995).

    Article  CAS  Google Scholar 

  7. Hetzer,M., Wurzer,G., Schweyen,R. J. & Mueller,M. W. Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 386, 417–420 ( 1997).

    Article  ADS  CAS  Google Scholar 

  8. Mills,D. A., Manias,D. A., McKay,L. L. & Dunny,G. M. Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J. Bacteriol. 179, 6107– 6111 (1997).

    Article  CAS  Google Scholar 

  9. Lambowitz,A. M., Caprara,M. G., Zimmerly,S. & Perlman,P. S. in The RNA World 451–485 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  10. Matsuura,M. et al. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11, 2910–2924 (1997).

    Article  CAS  Google Scholar 

  11. Cousineau,B. et al. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94, 451–462 ( 1998).

    Article  CAS  Google Scholar 

  12. Kuipers,O. P., Beerthuyzen,M. M., de Ruyter, P. G., Luesink,E. J. & de Vos,W. M. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 10, 27299–27304 ( 1995).

    Article  Google Scholar 

  13. Biswas,I., Gruss,A., Ehrlich,S. D. & Maguin,E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J. Bacteriol. 175, 3628–3625 (1993).

    Article  CAS  Google Scholar 

  14. Mueller,M. W., Allmaier,M., Eskes,R. & Schweyen,R. J. Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature 366, 174– 176 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Sellem,C. H., Lecellier,G. & Belcour, L. Transposition of a group II intron. Nature 366, 176–178 ( 1993).

    Article  ADS  CAS  Google Scholar 

  16. Mohr,G., Smith,D., Belfort,M. & Lambowitz,A. M. Rules for DNA target site recognition by a Lactococcal intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14 , 559–573 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roman,J. & Woodson,S. A. Reverse splicing of the Tetrahymena IVS: Evidence for multiple reaction sites in the 23S tRNA. RNA 1, 478–490 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Woodson,S. A. & Cech,T. R. Reverse self-splicing of the Tetrahymena group I intron: Implication for the directionality of splicing and for intron transposition. Cell 57, 335– 345 (1989).

    Article  CAS  Google Scholar 

  19. Augustin,S., Muller,M. W. & Schweyen, R. J. Reverse self-splicing of group II intron RNAs in vitro. Nature 343, 383– 386 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Morl,M. & Schmelzer,C. Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Cell 60, 629– 636 (1990).

    Article  CAS  Google Scholar 

  21. Mohr,G. & Lambowitz,A. M. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Nature 354, 164–167 ( 1991).

    Article  ADS  CAS  Google Scholar 

  22. Thompson,A. J. & Herrin,D. L. A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8 S rRNA. J. Mol. Biol. 236, 455– 468 (1994).

    Article  CAS  Google Scholar 

  23. Roman,J., Rubin,M. N. & Woodson, S. A. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. RNA 5, 1–13 (1999).

    Article  CAS  Google Scholar 

  24. Eickbush,T. H. Mobile introns: retrohoming by complete reverse splicing. Curr. Biol. 9, R11–R14 ( 1999).

    Article  CAS  Google Scholar 

  25. Curcio,M. J. & Belfort,M. Retrohoming: cDNA-mediated mobility of group II introns requires a catalytic RNA. Cell 84, 9–12 (1996).

    Article  CAS  Google Scholar 

  26. Ferat,J. & Michel,F. Group II self-splicing introns in bacteria. Nature 364, 358– 361 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Xiong,Y. & Eickbush,T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).

    Article  CAS  Google Scholar 

  28. Zimmerly,S., Guo,H., Perlman,P. S. & Lambowitz,A. M. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82, 545–554 ( 1995).

    Article  CAS  Google Scholar 

  29. Smit,A. F. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6, 743–748 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. San Filippo and A. Lambowitz for providing the LtrA Endo- YRT mutant. We also thank D. Manias and G. Dunny for help in constructing pLEtd+KR″; D. Ehrlich and A. Sorokin for information based on the L. lactis DNA sequence; J. Curcio, K. Derbyshire, V. Derbyshire, S. Hanes, A. Lambowitz, R. Lease, R. Morse, D. Nag and M. Parker for comments on the manuscript; N. J. Schisler and J. Palmer for estimates of intron composition of the human genome; and M. Carl for manuscript preparation. This work was supported by NIH grants to M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Belfort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cousineau, B., Lawrence, S., Smith, D. et al. Retrotransposition of a bacterial group II intron. Nature 404, 1018–1021 (2000). https://doi.org/10.1038/35010029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010029

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing