Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Manipulation of atoms across a surface at room temperature

Abstract

Since the realization that the tips of scanning probe microscopes can interact with atoms at surfaces, there has been much interest in the possibility of building or modifying nanostructures or molecules directly from single atoms1. Individual large molecules can be positioned on surfaces2,3,4, and atoms can be transferred controllably between the sample and probe tip5,6. The most complex structures7,8,9,10,11 are produced at cryogenic temperatures by sliding atoms across a surface to chosen sites. But there are problems in manipulating atoms laterally at higher temperatures—atoms that are sufficiently well bound to a surface to be stable at higher temperatures require a stronger tip interaction to be moved. This situation differs significantly from the idealized weakly interacting tips12,13 of scanning tunnelling or atomic force microscopes. Here we demonstrate that precise positioning of atoms on a copper surface is possible at room temperature. The triggering mechanism for the atomic motion unexpectedly depends on the tunnelling current density, rather than the electric field or proximity of tip and surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM image, 60 Ă… Ă— 60 Ă…, of Br on Cu(100).
Figure 2: Image taken immediately after Fig. 1, showing the same atoms marked A,B,C and D.
Figure 3
Figure 4: Vertical section through an image along the track of a single moving atom.
Figure 5: Controlled positioning of a single atom at room temperature.

Similar content being viewed by others

References

  1. Avouris,Ph. Manipulation of matter at the atomic and molecular-levels. Acc. Chem. Res. 28, 95–102 ( 1995).

    Article  CAS  Google Scholar 

  2. Jung,T. A., Schittler,R. R., Gimzewski, J. K., Tang,H. & Joachim,C. Controlled room-temperature positioning of individual molecules: Molecular flexure and motion. Science 271, 181–184 ( 1996).

    Article  ADS  CAS  Google Scholar 

  3. Cuberes,M. T., Schittler,R. R. & Gimzewski, J. K. Room-temperature repositioning of individual C 60 molecules at Cu steps: Operation of a molecular counting device. Appl. Phys. Lett. 69, 3016– 3018 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Beton,P. H., Dunn,A. W. & Moriarty, P. Manipulation of C60 molecules on a Si surface. Appl. Phys. Lett. 67, 1075– 1077 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Lyo,I.-W. & Avouris,Ph. Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the STM. Science 253, 173–176 ( 1991).

    Article  ADS  CAS  Google Scholar 

  6. Dujardin,G. et al.Vertical manipulation of individual atoms by a direct STM tip-surface contact on Ge(111). Phys. Rev. Lett. 80, 3085–3088 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Crommie,M. F., Lutz,C. P., Eigler,D. M. & Heller,E. J. Quantum corrals. Physica D 83, 98–108 (1995).

    Article  ADS  Google Scholar 

  8. Eigler,D. M. & Schweizer,E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Whitman,L. J., Stroscio,J. A., Dragoset, R. A. & Cellota,R. Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope. Science 251, 1206–1210 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Bartels,L., Meyer,G. & Rieder,K.-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 ( 1997).

    Article  ADS  CAS  Google Scholar 

  11. Meyer,G., Zophel,S. & Rieder,K.-H. Manipulation of atoms and molecules with a low temperature scanning tunneling microscope. Appl. Phys A 63, 557–564 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Jarvis,S. P., Yamada,H., Yamamoto,S.-I., Tokumoto,H. & Pethica,J. B. Direct mechanical measurement of interatomic potentials. Nature 384, 247 –249 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Cross,G. et al. Adhesion interaction between atomically defined tip and sample. Phys. Rev. Lett. 80, 4685– 4688 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Spencer,N. D., Goddard,P. J., Davies,P. W., Kitson,M. & Lambert,R. M. A simple, controllable source for dosing molecular halogens in uhv. J. Vac. Sci. Technol. A 1, 1554–1555 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Wintterlin,J. et al. Atomic resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. Phys. Rev. Lett. 62, 59–62 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Ralls,K. S., Ralph,D. C. & Buhrman, R. A. Individual-defect electromigration in metal nanobridges. Phys. Rev. B. 40, 11561– 11570 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Walkup,R. E., Newns,D. M. & Avouris, Ph. Role of multiple inelastic transitions in atom-transfer with the scanning tunneling microscope. Phys. Rev. B 48, 1858–1861 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Todorov,T. N. Local heating in ballistic atomic-scale contracts. Phil. Mag. 77, 965–973 (1998).

    Article  CAS  Google Scholar 

  19. Shen,T. C. et al. Atomic-scale desorption through electronic and vibrational- excitation mechanisms. Science 268, 1590 –1592 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Hansen,O., Ravnkilde,J. T., Quaade,U., Stokbro,K. & Grey,F. Field-induced deformation as a mechanism for scanning tunneling microscopy based nanofabrication. Phys. Rev. Lett. 81, 5572–5575 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Welland, T. Todorov and D. Eigler for comments. The apparatus used in this work was originally funded by EPSRC.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishlock, T., Oral, A., Egdell, R. et al. Manipulation of atoms across a surface at room temperature. Nature 404, 743–745 (2000). https://doi.org/10.1038/35008030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008030

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing