Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA

Abstract

Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G·C → T·A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG·C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG·C-containing DNA at 2.1 Å resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a pro-mutator by relaxing the specificity of the enzyme for the base opposite oxoG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of hOGG1 in preventing mutagenesis by oxidized guanines in DNA.
Figure 2: Overall structure of the hOGG1–DNA complex.
Figure 3: Sequence/structural alignment of hOGG1 with other HhH–GPD superfamily members.
Figure 4: Contact interface between hOGG1 and oxoG·C-containing DNA.
Figure 5: Electrostatic potential surface representation (GRASP44) of hOGG1 showing the unusually neutral DNA–protein interaction surface.
Figure 6: Recognition of the oxoG lesion and the estranged cytosine.
Figure 7
Figure 8: Enzymatic activity and substrate specificity of R154H mutant hOGG1.

Similar content being viewed by others

References

  1. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  Google Scholar 

  3. Michaels, M. L. & Miller, J. H. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol. 174, 6321–6325 (1992).

    Article  CAS  Google Scholar 

  4. Grollman, A. P. & Moriya, M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9, 246–249 (1993).

    Article  CAS  Google Scholar 

  5. Hollstein, M. et al.Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 24, 141–146 (1996).

    Article  CAS  Google Scholar 

  6. Lu, R., Nash, H. M. & Verdine, G. L. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr. Biol. 7, 397–407 (1997).

    Article  CAS  Google Scholar 

  7. Arai, K. et al.Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 14, 2857–2861 (1997).

    Article  CAS  Google Scholar 

  8. Roldan-Arjona, T. et al.Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl Acad. Sci. USA 94, 8016–8020 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Bjoras, M. et al.Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 16, 6314–6322 (1997).

    Article  CAS  Google Scholar 

  10. Rosenquist, T. A., Zharkov, D. O. & Grollman, A. P. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc. Natl Acad. Sci. USA 94, 7429–7434 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Radicella, J. P., Dherin, C., Desmaze, C., Fox, M. S. & Boiteux, S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 8010–8015 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Kuo, F. C. & Sklar, J. Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J. Exp. Med. 186, 1547–1556 (1997).

    Article  CAS  Google Scholar 

  13. Aburatani, H. et al.Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Cancer Res 57, 2151–2156 (1997).

    CAS  PubMed  Google Scholar 

  14. van der Kemp, P. A., Thomas, D., Barbey, R., de Oliveira, R. & Boiteux, S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl Acad. Sci. USA 93, 5197–5202 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Bruner, S. D., Nash, H. M., Lane, W. S. & Verdine, G. L. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr. Biol. 8, 393–403 (1998).

    Article  CAS  Google Scholar 

  16. Klungland, A. et al.Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA 96, 13300–13305 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Takao, M., Aburatani, H., Kobayashi, K. & Yasui, A. Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 26, 2917–2922 (1998).

    Article  CAS  Google Scholar 

  18. Nishioka, K. et al.Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell 10, 1637–1652 (1999).

    Article  CAS  Google Scholar 

  19. Nash, H. M. et al.Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr. Biol. 6, 968–980 (1996).

    Article  CAS  Google Scholar 

  20. Shinmura, K., Kasai, H., Sasaki, A., Sugimura, H. & Yokota, J. 8-Hydroxyguanine (7,8-dihydro-8-oxoguanine) DNA glycosylase and AP lyase activities of hOGG1 protein and their substrate specificity. Mutat. Res. 385, 75–82 (1997).

    Article  CAS  Google Scholar 

  21. Chevillard, S. et al.Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene 16, 3083–3086 (1998).

    Article  CAS  Google Scholar 

  22. Dherin, C., Radicella, J. P., Dizdaroglu, M. & Boiteux, S. Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res. 27, 4001–4007 (1999).

    Article  CAS  Google Scholar 

  23. Shinmura, K. et al.Infrequent mutations of the hOGG1 gene, that is involved in the excision of 8-hydroxyguanine in damaged DNA, in human gastric cancer. Jpn. J. Cancer Res. 89, 825–828 (1998).

    Article  CAS  Google Scholar 

  24. Blons, H. et al.Frequent allelic loss at chromosome 3p distinct from genetic alterations of the 8-oxoguanine DNA glycosylase 1 gene in head and neck cancer. Mol. Carcinog. 26, 254–260 (1999).

    Article  CAS  Google Scholar 

  25. Nash, H. M., Lu, R., Lane, W. S. & Verdine, G. L. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution. Chem. Biol. 4, 693–702 (1997).

    Article  CAS  Google Scholar 

  26. Thayer, M. M., Ahern, H., Xing, D., Cunningham, R. P. & Tainer, J. A. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 14, 4108–4120 (1995).

    Article  CAS  Google Scholar 

  27. Labahn, J. et al.Structural basis for the excision repair of alkylation-damaged DNA. Cell 86, 321–329 (1996).

    Article  CAS  Google Scholar 

  28. Kuo, C. F. et al.Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258, 434–440 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Guan, Y. et al.MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nature Struct. Biol. 5, 1058–1064 (1998).

    Article  CAS  Google Scholar 

  30. Yamagata, Y. et al.Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli. Cell 86, 311–319 (1996).

    Article  CAS  Google Scholar 

  31. Dodson, M. L., Michaels, M. L. & Lloyd, R. S. Unified catalytic mechanism for DNA glycosylases. J. Biol. Chem. 269, 32709–32712 (1994).

    CAS  PubMed  Google Scholar 

  32. Kohno, T. et al.Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16, 3219–3225 (1998).

    Article  CAS  Google Scholar 

  33. Choi, J. Y. et al.Thermolabile 8-hydroxyguanine DNA glycosylase with low activity in senescence-accelerated mice due to a single-base mutation. Free Radical Biol. Med. 27, 848–854 (1999).

    Article  CAS  Google Scholar 

  34. Barrett, T. E. et al.Crystal structure of a thwarted mismatch glycosylase DNA repair complex. EMBO J. 18, 6599–6609 (1999).

    Article  CAS  Google Scholar 

  35. Parikh, S. S. et al.Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17, 5214–5226 (1998).

    Article  CAS  Google Scholar 

  36. Lau, A. Y., Scharer, O. D., Samson, L., Verdine, G. L. & Ellenberger, T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 95, 249–258 (1998).

    Article  CAS  Google Scholar 

  37. Verdine, G. L. & Bruner, S. D. How do DNA repair proteins locate damaged bases in the genome? Chem. Biol. 4, 329–334 (1997).

    Article  CAS  Google Scholar 

  38. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. M. W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1996).

    Article  Google Scholar 

  40. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849-61 (1999).

    PubMed  Google Scholar 

  41. Brunger, A. T. et al.Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  42. Brunger, A. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. 49, 24–36 (1993).

    Article  CAS  Google Scholar 

  43. Carson, M. J. Ribbons 2.0. J. Appl. Crystallogr. 24, 379–384 (1991).

    Article  Google Scholar 

  44. Nicholls, A., Sharp, K. A., Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  45. Laskowski, R. J., Macarthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Lawson for assisting in DNA synthesis and protein expression; H. Huang, Q. Fan, L. Chen, S. Ealick, A. Lau, S. Liemann, H. Nash and members of the Verdine, S. C. Harrison and D.C. Wiley laboratories for helpful discussions; C. Schafmeister, R. Crouse, M. Przetakiewicz, R. Sweet, C. Metz and the staff of the CHESS A1 and NSLS X12C synchrotron beamlines for invaluable help with data collection; and K. Haushalter and X. Zhang for critical reading of this manuscript. This research was funded by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Verdine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruner, S., Norman, D. & Verdine, G. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000). https://doi.org/10.1038/35002510

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002510

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing