Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The joining of ribosomal subunits in eukaryotes requires eIF5B

Abstract

Initiation of eukaryotic protein synthesis begins with the ribosome separated into its 40S and 60S subunits1. The 40S subunit first binds eukaryotic initiation factor (eIF) 3 and an eIF2–GTP–initiator transfer RNA ternary complex. The resulting complex requires eIF1, eIF1A, eIF4A, eIF4B and eIF4F to bind to a messenger RNA and to scan to the initiation codon2. eIF5 stimulates hydrolysis of eIF2-bound GTP and eIF2 is released from the 48S complex formed at the initiation codon before it is joined by a 60S subunit to form an active 80S ribosome3,4,5,6,7,8. Here we show that hydrolysis of eIF2-bound GTP induced by eIF5 in 48S complexes is necessary but not sufficient for the subunits to join. A second factor termed eIF5B (relative molecular mass 175,000) is essential for this process. It is a homologue of the prokaryotic initiation factor IF2 (refs 6, 7) and, like it8,9,10,11,12, mediates joining of subunits and has a ribosome-dependent GTPase activity that is essential for its function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of 80S complexes on β-globin mRNA requires eIF5 and eIF5B.
Figure 2: Dependence of the activities of eIF5 and eIF5B on the presence of eIF1 and eIF3.
Figure 3: GTP binding and hydrolysis by eIF5B.
Figure 4: Catalytic activity of eIF5B.
Figure 5: Hydrolysis of GTP bound to cIF5B is required for release of eIF5B from ribosomes.

Similar content being viewed by others

References

  1. Merrick, W. C. Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev. 56, 291–315 ( 1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pestova, T. V., Borukhov, S. I. & Hellen, C. U. T. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854–859 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Chakrabarti, A. & Maitra, U. Functions of eukaryotic initiation factor 5 in the formation of an 80S ribosomal polypeptide chain initiation complex. J. Biol. Chem. 266, 14039–14045 (1991).

    CAS  PubMed  Google Scholar 

  4. Das, K., Chesevich, J. & Maitra, U. Molecular cloning and expression of cDNA for mammalian translation initiation factor 5. Proc. Natl Acad. Sci. USA 90, 3058–3062 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Huang, H.-K., Yoon, H., Hannig, E. M. & Donahue, T. F. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 11, 2396–2413 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi, S. K., Lee, J. H., Zoll, W. L., Merrick, W. C. & Dever, T. E. Promotion of Met-tRNAMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280, 1757–1760 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lee, J. H., Choi, S. K., Roll-Mecak, A., Burley, S. K. & Dever, T. E. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation factor IF2. Proc. Natl Acad. Sci. USA 96, 4342–4347 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Sacerdot, C., Dessen, P., Hershey, J. W. B., Plumbridge, J. A. & Grunberg-Manago, M. Sequence of the initiation factor IF2 gene; unusual protein features and homologies with elongation factors. Proc. Natl Acad. Sci. USA 81, 7787– 7791 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kolakofsky, D., Dewey, K. F., Hershey, J. W. B. & Thach, R. E. Guanosine 5′-triphosphatase activity of initiation factor f2. Proc. Natl Acad. Sci. USA 61, 1066– 1070 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Godefroy-Colburn, T. et al. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J. Mol. Biol. 94, 461– 478 (1975).

    Article  PubMed  Google Scholar 

  11. Luchin, S. et al. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J. Biol. Chem. 274, 6074–6079 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  12. Lockwood, A. H., Sarkar, P. & Maitra, U. Release of polypeptide chain initiation factor IF-2 during initiation complex formation. Proc. Natl Acad. Sci. USA 69, 3602–3605 ( 1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Merrick, W. C., Kemper, W. M. & Anderson, W. F. Purification and characterization of homogenous initiation factor M2A from rabbit reticulocytes. J. Biol. Chem. 250, 5556–5562 (1975).

    CAS  PubMed  Google Scholar 

  14. Trachsel, H., Emi, B., Schreier, M. H. & Staehelin, T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755–767 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Benne, R., Brown-Luedi, M. L. & Hershey, J. W. B. Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J. Biol. Chem. 253, 3070– 3077 (1978).

    CAS  PubMed  Google Scholar 

  16. Peterson, D. T., Safer, B. & Merrick, W. C. Role of eukaryotic initiation factor 5 in the formation of 80S initiation complexes. J. Biol. Chem. 254, 7730–7735 (1979).

    CAS  PubMed  Google Scholar 

  17. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. T. A prokaryotic-like mode of binding of cytoplasmic eukaryotic ribosomes to the initiation codon during internal initiation of translation of Hepatitis C and Classical Swine fever virus RNAs. Genes Dev. 12, 67– 83 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Merrick for discussions, D. Etchison and R. Schneider for antibodies, and L. Siconolfi-Baez for sequencing eIF5B. These studies were supported by grants from the NIH to C.U.T.H. and T.V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V. Pestova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pestova, T., Lomakin, I., Lee, J. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335 (2000). https://doi.org/10.1038/35002118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing