Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid diffusive infiltration of sodium into partially molten peridotite

Abstract

Recent seismological, geochemical and experimental observations suggest that, as mantle peridotite melts, the resulting basaltic liquid forms an interconnected network, culminating in the rapid ascent of the basalt relative to the surrounding solid matrix1,2,3. Mantle melting is therefore a polybaric process, with melts produced over a range of pressures having differing chemical characteristics4,5,6. Modelling and peridotite-melting experiments designed to simulate polybaric mantle melting generally assume that there is no interaction between melts generated at greater pressures and the overlying solid mantle at lower pressures5,7. Beneath mid-ocean ridges, melts derived from greater depth are probably channelized during ascent, so preventing direct re-equilibration with shallow peridotite8, as required by geochemical observations6,9. I show here, however, that sodium in ascending melts will quickly diffuse into the melt formed within nearby peridotite at lower pressures. This process fundamentally changes the manner by which the peridotite melts, and can account for both the creation of silica-rich glass inclusions in mantle xenoliths and the anomalous melting modes recorded by abyssal peridotites. Increased melting of lithosphere and upwelling asthenosphere could result from this process without the need to invoke higher mantle temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Back-scattered electron (BSE) images of peridotite.
Figure 2: Elemental profiles as a function of distance from the original basanite–peridotite interface (x=0).
Figure 3: Variation in clinopyroxene and spinel compositions and mineral modes with distance from the original basanite–peridotite interface.

Similar content being viewed by others

References

  1. Toomey, D. R., Wilcock, W. S. D., Solomon, S. C., Hammond, W. C. & Orcutt, J. A. Mantle seismic structure beneath the MELT region of the East Pacific Rise from P and S wave tomography. Science 280, 1224–1227 ( 1998).

    Article  ADS  CAS  Google Scholar 

  2. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

  3. Waff, H. S. & Bulau, J. R. Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J. Geophys. Res. 84, 6109–6114 (1979).

    Article  ADS  Google Scholar 

  4. Klein, E. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Kinzler, R. J. & Grove, T. Primary magmas of mid-ocean ridge basalts; 2, Applications. J. Geophys. Res. 97, 6907 –6926 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990).

    Article  ADS  Google Scholar 

  7. Hirose, K. & Kushiro, I. The effect of melt segregation on polybaric mantle melting: Estimation from the incremental melting experiments. Phys. Earth Planet. Inter. 107, 111– 118 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Kelemen, P. B., Shimizu, N. & Salters, V. J. M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–753 ( 1995).

    Article  ADS  CAS  Google Scholar 

  9. Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. Review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil. Trans. R. Soc. Lond. 355, 283–318 (1997).

    Article  ADS  Google Scholar 

  10. Stolper, E. M. A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis. Contrib. Mineral. Petrol. 74, 13–27 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Hirose, K. & Kushiro, I. Partial melting of dry peridotites at high pressures; determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 114, 477–489 ( 1993).

    Article  ADS  CAS  Google Scholar 

  12. Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: implication on the origin of peridotitic upper mantle. J. Geophys. Res. 91, 9367–9382 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Lundstrom, C. C., Gill, J. & Williams, Q. A geochemically consistent hypothesis for MORB generation. Chem. Geol. 162, 105–126 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Watson, E. B. Basalt contamination by continental crust: some experiments and models. Contrib. Mineral. Petrol. 80, 73–87 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Watson, E. B. & Jurewicz, S. R. Behavior of alkalies during diffusive interaction of granitic xenoliths with basaltic magma. J. Geol . 92, 121–131 ( 1984).

    Article  ADS  CAS  Google Scholar 

  16. Lesher, C. E. Kinetics of Sr and Nd exchange in silicate liquids—theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. J. Geophys. Res. 99, 9585 –9604 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Kushiro, I. On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene and silica minerals. Am. J. Sci. 275, 411– 431 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Ryerson, F. J. Oxide solution mechanisms in silicate melts—systematic variations in the activity coefficient of silica. Geochim. Cosmochim. Acta 49, 637–649 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Hirschmann, M. M., Baker, M. B. & Stolper, E. M. The effect of alkalies on the silica content of mantle-derived melts. Geochim. Cosmochim. Acta. 62, 883 –902 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Walter, M. J. & Presnall, D. C. Melting behavior of simplified lherzolite in the system CaO-MgO-Al2O3-SiO2-Na 2O from 7 to 35 kbar. J. Petrol. 35, 329–359 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Baker, M. B., Hirschmann, M. M., Ghiorso, M. S. & Stolper, E. M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculation. Nature 375, 308– 311 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Robinson, J. A. C., Wood, B. J., & Blundy, J. D. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet. Sci. Lett. 155 , 97–111 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Frey, F. A. & Green, D. H. The mineralogy, geochemistry, and origin of lherzolite inclusions in Victorian basanites. Geochim. Cosmochim. Acta 38, 1023–1059 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Vannucci, R., Botazzi, P., Wulf-Pedersen, E. & Neumann, E. R. Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents. Earth Planet. Sci. Lett. 158, 39–51 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Shaw, C. S. J., Thibault, Y., Edgar, A. D. & Lloyd, F. E. Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contrib. Mineral. Petrol. 132, 354– 370 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Draper, D. S. & Green, T. H. P–T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C-O-H fluid-saturated conditions. J. Petrol. 38, 1187–1224 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Niu, Y., Langmuir, C. H. & Kinzler, R. J. The origin of abyssal peridotites: a new perspective. Earth Planet. Sci. Lett. 152, 251– 265 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Elthon, D. Chemical trends in abyssal peridotites; refertilization of depleted suboceanic mantle. J. Geophys. Res. 97, 9015– 9025 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Langmuir, C. H. & Hanson, G. An evaluation of major element heterogeneity in the mantle sources of basalts. Phil. Trans. R. Soc. Lond. A 297, 383– 407 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank P. Kelemen and P. Asimow for comments on the manuscript, and P. Hess, D. Forsyth, Y. Liang, Q. Williams and M. Rutherford for suggestions. I also thank M. Rutherford for use of his laboratory, J. Devine and M. Jercinovic for assistance with the electron microprobes, and K. Hoernle, E. Takahashi and M. Perfit for sample donation. This work was supported by an SGER grant from the NSF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundstrom, C. Rapid diffusive infiltration of sodium into partially molten peridotite . Nature 403, 527–530 (2000). https://doi.org/10.1038/35000546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000546

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing