Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio

Abstract

Rotation of the bacterial flagellar motor is driven by an ensemble of torque-generating units containing the proteins MotA and MotB1,2,3. Here, by inducing expression of MotA in motA- cells under conditions of low viscous load, we show that the limiting speed of the motor is independent of the number of units: at vanishing load, one unit turns the motor as rapidly as many. This result indicates that each unit may remain attached to the rotor for most of its mechanochemical cycle, that is, that it has a high duty ratio4. Thus, torque generators behave more like kinesin, the protein that moves vesicles along microtubules, than myosin, the protein that powers muscle. However, their translation rates, stepping frequencies and power outputs are much higher, being greater than 30 µm s-1, 12 kHz and 1.5 × 105 pN nm s-1, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurements made at high and low load.
Figure 2: Speeds, measured and simulated.
Figure 3: Torques, measured and simulated.

Similar content being viewed by others

References

  1. Block, S. M. & Berg, H. C. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309, 470–473 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Blair, D. F. & Berg, H. C. Restoration of torque in defective flagellar motors. Science 242, 1678– 1681 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Samuel, A. D. T. & Berg, H. C. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71, 918–923 ( 1996).

    Article  ADS  CAS  Google Scholar 

  4. Leibler, S. & Huse, D. A. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121 , 1357–1368 (1993).

    Article  CAS  Google Scholar 

  5. Macnab, R. M. in Escherichia coli and Salmonella: Cellular and Molecular Biology Vol. 1 (eds Neidhardt, F. C. et al.) 123– 145 (American Society for Microbiology, Washington, 1996).

    Google Scholar 

  6. Berry, R. M. & Armitage, J. P. The bacterial flagellar motor. Adv. Microb. Physiol. 41, 291– 337 (1999).

    Article  CAS  Google Scholar 

  7. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73– 74 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Berg, H. C. & Turner, L. Torque generated by the flagellar motor of Escherichia coli. Biophys. J. 65, 2201–2216 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Chen, X. & Berg, H. C. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. (in the press).

  11. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348– 352 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Uyeda, T., Abramson, P. D. & Spudich, J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl Acad. Sci. USA 93, 4459–4464 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 ( 1997).

    Article  ADS  CAS  Google Scholar 

  14. Macnab, R. M. Bacterial flagella rotating in bundles: a study in helical geometry. Proc. Natl Acad. Sci. USA 74, 221– 225 (1997).

    Article  ADS  Google Scholar 

  15. DeRosier, D. J. The turn of the screw: the bacterial flagellar motor. Cell 93, 17–20 (1998).

    Article  CAS  Google Scholar 

  16. Muramoto, K. et al. High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. J. Mol. Biol. 251, 50–58 (1995).

    Article  CAS  Google Scholar 

  17. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184– 189 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Toyoshima, Y. Y. et al. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328, 536– 539 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Yasuda, R., Noji, H., Kinosita, K. J. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124 (1998).

    Article  CAS  Google Scholar 

  20. Silverman, M. & Simon, M. Operon controlling motility and chemotaxis in E. coli. Nature 264, 577– 580 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Armstrong, J. B. & Adler, J. Genetics of motility in Escherichia coli: complementation of paralyzed mutants. Genetics 56, 363–373 ( 1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fung, D. C. Y. K. Powering the Escherichia coli Flagellar Motor with an External Voltage Source. Thesis, Harvard Univ. (1994).

    Google Scholar 

  23. Maurer, L. & Orndorff, P. E. Identification and characterization of genes determining receptor binding and pilus length of Escherichia coli type 1 pili. J. Bacteriol. 169, 640 –645 (1987).

    Article  CAS  Google Scholar 

  24. Kuwajima, G. Flagellin domain that affects H antigenicity of Escherichia coli K-12. J. Bacteriol. 170, 485– 488 (1988).

    Article  CAS  Google Scholar 

  25. Scharf, B. E., Fahrner, K. A., Turner, L. & Berg, H. C. Control of direction of flagellar rotation in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 95, 201–206 ( 1998).

    Article  ADS  CAS  Google Scholar 

  26. Berry, R. M. & Berg, H. C. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc. Natl Acad. Sci. USA 94, 14433– 14437 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics (Kluwer Academic, Drodrecht, 1991).

    MATH  Google Scholar 

  28. Berry, R. M. & Berg, H. C. Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys. J. 76, 580–587 ( 1999).

    Article  ADS  CAS  Google Scholar 

  29. Block, S. M., Blair, D. F. & Berg, H. C. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514– 517 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Block, S. M., Blair, D. F. & Berg, H. C. Compliance of bacterial polyhooks measured with optical tweezers. Cytometry 12, 492– 496 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Fahrner and A. Samuel for plasmid and strain constructions, and K. Fahrner, A. Samuel and L. Turner for comments on the manuscript. This work was supported by the Wellcome Trust, the Rowland Institute for Science and by the US NIH.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, W., Berry, R. & Berg, H. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000). https://doi.org/10.1038/35000233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000233

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing