Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Analysis of fusion gene and encoded photopigment of colour-blind humans

Abstract

IN humans, long-wavelength-sensitive and middle-wavelength-sensitive cone pigments are encoded by genes lying in a head-to-tail tandem array on the X chromosome. Deficiencies in red–green colour vision seem to arise from unequal recombination of these normal X-linked genes1,2. In some dichromats this recombination is believed to yield a fusion gene encoding a product with an absorption spectrum similar to that of one or the other of the normal photopigments2. Until now, however, such a relationship between the structure of a pigment gene and the spectral properties of its encoded pigment has not been directly shown. We have now sequenced a fusion gene isolated from a red-green colour-blind human and determined the spectral properties of the pigment that it encodes. The absorption spectrum of the photopigment was very similar to that of normal middle-wavelength-sensitive photopigment, even though about half of its DNA coding sequence seems to be derived from a gene encoding normal long-wavelength-sensitive pigment. These results indicate the regions of the X-encoded photopigment apoproteins that are responsible for differences in their spectral tuning, and imply that the striking variations in colour vision among anomalous trichromats of a particular type are not attributable to anomalous pigments with differing spectral peaks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nathans, J., Thomas, D. & Hogness, D. S. Science 232, 193–202 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B. & Hogness, D. S. Science 232, 203–210 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Nagy, A. L. J. opt. Soc. Amer. 72, 571–577 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Pokorny, J. & Smith, V. C. Color Res. Appl. 7, 159–164 (1982).

    Article  Google Scholar 

  5. Neitz, J. & Jacobs, G. H. J. opt. Soc. Amer. A1, 1175–1180 (1984).

    Article  ADS  Google Scholar 

  6. Schnapf, J. L., Kraft, T. W. & Baylor, D. A. Nature 325, 439–441 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Lehninger, A. L. Biochemistry (Worth, New York, 1975).

    Google Scholar 

  8. Hackett, N. R., Stern, L. J., Chao, B. H., Kronis, K. A. & Khorana, H. G. J. biol. Chem. 262, 9277–9284 (1987).

    CAS  PubMed  Google Scholar 

  9. Kosower, E. M. Proc. natn. Acad. Sci. U.S.A. 85, 1076–1080 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Drummond-Borg, M., Deeb, S. & Motulsky, A. G. Am. J. hum. Genet. 43, 675–683 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hurvich, L. M. & Jameson, D. Mod. Probl. Opthalmol. 13, 200–209 (1974).

    CAS  Google Scholar 

  12. Wyszecki, G. & Stiles, W. S. Color Science (Wiley, New York, 1982).

    Google Scholar 

  13. Dawis, S. M. Vision Res. 21, 1427–1430 (1981).

    Article  CAS  Google Scholar 

  14. DiLella, A. G. & Woo, S. L. C. Meth. Enzym. 152, 199–212 (1987).

    Article  CAS  Google Scholar 

  15. Wahl, G. M. et al. Proc. natn. Acad. Sci. U.S.A. 84, 2160–2164 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neitz, J., Neitz, M. & Jacobs, G. Analysis of fusion gene and encoded photopigment of colour-blind humans. Nature 342, 679–682 (1989). https://doi.org/10.1038/342679a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342679a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing