Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New constraints on early Tertiary palaeoproductivity from carbon isotopes in foraminifera

Abstract

ONE of the most pronounced features of marine sections at the Cretaceous/Tertiary (K/T) boundary is the negative excursion in biogenic carbonate δ13C in the early Tertiary carbon isotope record1–9. The coincidence of this excursion with the elimination of many marine plankton species supports predictions that large-scale reduction of primary productivity in the oceans would disrupt the biological carbon pump, resulting in a diminished surf ace-to-deep δ13C gradient10 (Δδ13C). Carbonate accumulation rates and other geochemical indices support the idea that the oceans were less productive in the early Palaeocene9. Here we present carbon isotope analyses of individual species of benthic and planktonic foraminifera spanning the K/T boundary in OOP Hole 690C (Weddell Sea, Antarctica) which demonstrate that primary productivity following the K/T extinctions may not have diminished to the extent or for the duration indicated by previous isotope studies. The magnitude of the δ13C gradient change is dependent on the species analysed, reflecting differing depths of calcification, seasonal contrasts and/or disequilibrium effects. The lack of any change in benthic δ13C at the K/T boundary indicates that the Antarctic may not have been a significant source of deep water during the early Palaeocene, contrary to previous suggestion11–13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thierstein, H. & Berger, W. H. Nature 276, 461–466 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Boersma, A. & Shackleton, N. J. Cretaceous Paleogene Boundary Events Symp. II. 50–53 (1979).

    Google Scholar 

  3. Arthur, M. A., Scholle, P. A. & Hasson, P., Init. Rep. DSDP Leg 47, 477–492 (1979).

  4. Scholle, P. A. & Arthur, M. A. Bull. Am. Ass. Petrol. Geol. 64, 67–87 (1980).

    CAS  Google Scholar 

  5. Boersma, A. & Shackleton, N. J. Init. Rep. DSDP Leg 62, 513–525 (1981).

  6. Williams, D. F., Healy-Williams, N., Thunell, R. C. & Leventer, A. Init. Rep. DSDP Leg 72, 921–930 (1983).

  7. Shackleton, N. J. & Hall, M. A. Init. Rep. DSDP, Leg 74, 599–613 (1984).

  8. Zachos, J. C. & Arthur, M. A. Paleoceanography 1, 5–26 (1986).

    Article  ADS  Google Scholar 

  9. Zachos, J. C., Arthur, M. A. & Dean, W. E. Nature 337, 61–64 (1988).

    Article  ADS  Google Scholar 

  10. Broecker, W. S. & Peng, T. H. Tracers in the Sea (ELDIGIO, New York, 1982).

    Google Scholar 

  11. Barrera, E., Huber, B. T., Savin, S. M. & Webb, P.-N. Paleoceanography 2, 21–47 (1987).

    Article  ADS  Google Scholar 

  12. Miller, K. M., Janecek, T. R., Katz, M. E. & Keil, D. J. Paleoceanography 2, 741–761 (1987).

    Article  ADS  Google Scholar 

  13. Kennett, J. P. & Stott, L. D. Proc. ODP. Sci. Res. (in the press).

  14. Barker, P. F. et al. Palaeogeogr. Palaeoclimatol., Palaeocol. 67, 75–102 (1988).

    Article  ADS  Google Scholar 

  15. Barker, P. F. et al. Proc. ODP, Sci. Res. (in the press).

  16. Hamilton, N. Proc. 0DP, Sci. Res. (in the press).

  17. Michel, H. V., Asaro, F., Alvarez, W. & Alvarez, L. W. Proc. ODP, Sci. Res. (in the press).

  18. Pospichal, J. J., Wise, S. W. Proc. ODP, Sci. Res. (in the press).

  19. Stott, L. D. & Kennett, J. P. Proc. ODP, Sci. Res. (in the press).

  20. Shackleton, N. J., Hall, M. A. & Boersma, A. Int. Rep. DSDP Leg 74, 599–612 (1984).

  21. Shackleton, N. J., Wiseman, J. D. H. & Buckley, H. A. Nature 242, 176–179 (1973).

    Article  Google Scholar 

  22. Williams, D. F., Sommer, M. A. II & Bender, M. L. Earth planet Sci. Lett. 36, 391–403 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Shackleton, N. J. & Vincent, E. Mar. Micropaleont. Int. 3, 1–13 (1983).

    ADS  Google Scholar 

  24. Curry, W. B. & Matthews, R. K. Palaeogeogr. Palaeoclimatol. Palaeoceol. 33, 173–191 (1981).

    Article  ADS  Google Scholar 

  25. Erez, J. & Honjo, S. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 129–156 (1981).

    Article  Google Scholar 

  26. Kahn, M. I. & Williams, D. F. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 47–69 (1981).

    Article  Google Scholar 

  27. Woodruff, F., Savin, S. M. & Douglas, R. G. Mar. Micropaleont. 5, 3–11 (1980).

    Article  ADS  Google Scholar 

  28. Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H. & Be, A. W. H. Nature 298, 841–844 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Dunbar, R. B. Coastal Upwelling. Its sediment Record (Plenum, New York, 1983).

    Google Scholar 

  30. Dudley, W. C., Blackwelder, P., Brand, L. & Duplessy, J-C. Mar. Micropaleont. 10, 1–8 (1986).

    Article  ADS  Google Scholar 

  31. Mix, A. The Geology of North America (Geological Society of America, Boulder, 1987).

    Google Scholar 

  32. Watabe, N. & Wilbur, K. M. Limnol. Oceanogr. 11, 567–575 (1966).

    Article  ADS  Google Scholar 

  33. Spero, H. J. & DeNiro, M. J. Symbiosis 4, 213–228 (1987).

    Google Scholar 

  34. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Science 208, 1035–1108 (1980).

    Article  Google Scholar 

  35. Toon, O. B. et al. Spec. Pap. geol. Soc. Am 190, 187–200, (1982).

    Google Scholar 

  36. Griffis, K. & Chapman, D. J. Palaeogeogr. Palaeoclimat. Palaeocol. 67, 305–314, (1988).

    Article  ADS  Google Scholar 

  37. Kroopnick, P. M. Deep Sea Res. 32, 57–84, (1985).

    Article  ADS  CAS  Google Scholar 

  38. Stott, L. D. & Delaney, M. (abstr.) Eos 69, 1249 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stott, L., Kennett, J. New constraints on early Tertiary palaeoproductivity from carbon isotopes in foraminifera . Nature 342, 526–529 (1989). https://doi.org/10.1038/342526a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342526a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing