Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CO2-enhanced melting of biotite-bearing rocks at deep-crustal pressure–temperature conditions

Abstract

THE role of CO2 in melting of the Earth's crust has been a topic of considerable debate. Experimental studies in quartz-feldspar systems1,2 have shown that CO2 solubility in simple granitic liquids is less than 1 wt% at pressures below 10 kbar and that dilution of H2O vapour with CO2 raises the vapour-saturated solidi3, indicating that CO2 inhibits, rather than promotes, crustal melting. On the other hand, from experiments on the system K2O–MgO–Al2O3–SiO2–H2O–CO2, Wendlandt has inferred significant solubility of CO2 in crustal melts4. Wendlandt observed that biotite–quartz–feldspar assemblages melt to orthopyroxene + liquid at temperatures as low as 740 °C in the presence of CO2-rich fluids, more than 50 °C lower than equivalent orthopyroxene-producing reactions in the pure-H2O systems5. This surprising result implies a fundamental melt interaction between MgO and CO2, because neither component alone has significant solubility in granitic liquids near the H2O-saturated solidus6. In view of the potentially important consequences of these results for deep-crustal processes, additional data are needed. Here we report the results of experimental melting studies on synthetic biotite–quartz and biotite–quartz–sanidine assemblages. In general agreement with Wendlandt's results, we find that these assemblages melt in the presence of CO2-rich vapour below 760 °C at pressures <10 kbar, conditions believed to be encountered in high-grade crustal metamorphism. This opens up the possibility that melting of the deep crust may occur in the presence of CO2-rich fluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kadik, A. A. & Lukanin, O. A. Geochem. Int. 10, 115–129 (1973).

    Google Scholar 

  2. Eggler, D. H. & Kadik, A. A. Am. Miner. 64, 1036–1048 (1979).

    CAS  Google Scholar 

  3. Holtz, F., Ebadi, A., Barbey, P., Johannes, W. & Pichavant, M. Terra Cognita 8, 66 (1988).

    Google Scholar 

  4. Wendlandt, R. F. Am. Miner. 66, 1164–1174 (1981).

    CAS  Google Scholar 

  5. Peterson, J. W. & Newton, R. C. J. Geol. 97, 465–485 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Puziewicz, J. & Johannes, W. Contr. Miner. Petrol. 100, 156–168 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Holloway, J. R. in Research Techniques for High Pressure and High Temperature (ed. Ulmer, G. C.) 217–258 (Springer, New York, 1971).

    Book  Google Scholar 

  8. Wood, B. J. Prog. exp. Petrol., Wat. environ. Res. Coun. 6, 17–19 (1976).

    Google Scholar 

  9. Holloway, J. R. Geochim. cosmochim. Acta 37, 651–666 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Ormaasen, D. E. Lithos 10, 291–310 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Rock, N. M. S. in Alkaline Igneous Rocks (eds Filton, J. G. & Upton, B. G. J.) 191–226 (spec. Pub. geol. Soc. 30, 1987).

    Google Scholar 

  12. McKenzie, D. Earth planet Sci. Lett. 74, 81–91 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Heier, K. S. Phil. Trans. R. Soc. Lond. A-273, 429–442 (1973).

    Article  ADS  Google Scholar 

  14. Lamb, R. C., Smalley, P. C. & Field, D. J. metamorphic Geol. 4, 143–160 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Ouzegane, K., Fourcade, S., Kienast, J.-R. & Javoy, M. Contr. Miner. Petrol. 98, 277–292 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Frost, B. R. & Frost, C. D. Nature 327, 503–506 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Newton, R. C., Smith, J. V. & Windley, B. F. Nature 288, 45–50 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Olsen, S. N. Contr. Miner. Petrol. 96, 104–120 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Touret, J. & Dietvorst, P. J. geol. Soc. Lond. 140, 635–649 (1983).

    Article  CAS  Google Scholar 

  20. Waters, D. J. J. metamorphic Geol. 6, 387–404 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Kerrick, D. M. & Jacobs, G. K. Am. J. Sci. 281, 735–767 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, J., Newton, R. CO2-enhanced melting of biotite-bearing rocks at deep-crustal pressure–temperature conditions. Nature 340, 378–380 (1989). https://doi.org/10.1038/340378a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340378a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing