Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lipids are required for directional pollen-tube growth

Abstract

Successful pollination and fertilization are absolute requirements for sexual reproduction in higher plants. Pollen hydration, germination and penetration of the stigma by pollen tubes are influenced by the exudate on wet stigmas1 and by the pollen coat in species with dry stigmas2,3,4,5. The exudate allows pollen tubes to grow directly into the stigma, whereas the pollen coat establishes the contact with the stigma. Pollen tubes then grow into the papillae, which are covered by a cuticle. The components of the exudate or pollen coat that are responsible for pollen tube penetration are not known. To discover the role of the exudate, we tested selected compounds for their ability to act as functional substitutes for exudate in the initial stages of pollen-tube growth on transgenic stigmaless tobacco plants1 that did not produce exudate. Here we show that lipids are the essential factor needed for pollen tubes to penetrate the stigma, and that, in the presence of these lipids, pollen tubes will also penetrate leaves. We propose that lipids direct pollen-tube growth by controlling the flow of water to pollen in species with dry and wet stigmas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence micrographs of longitudinal sections of stigmaless pistils 24 h after pollination.
Figure 2: Growth of Brassica pollen on stigmaless pistils, and lack of growth of Arabidopsis pop1mutant pollen after self-pollination of Arabidopsis.
Figure 3: Growth of pollen on leaves and in oil bordering gelled germination medium.

Similar content being viewed by others

References

  1. Goldman, M. H. S., Goldberg, R. B. & Mariani, C. Female sterile tobacco plants are produced by stigma specific cell ablation. EMBO J. 13, 2976–2984 (1994).

    Article  CAS  Google Scholar 

  2. Preuss, D., Lemieux, B., Yen, G. & Davis, R. W. Aconditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signalling during fertilization. Genes Dev. 7, 974–985 (1993).

    Article  CAS  Google Scholar 

  3. Dickinson, H. G. Pollen dressed for success. Nature 364, 573–574 (1993).

    Article  ADS  Google Scholar 

  4. Dickinson, H. G. Self-pollination: simply a social disease? Nature 367, 517–518 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Taylor, L. P. & Hepler, P. K. Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 461–491 (1997).

    Article  CAS  Google Scholar 

  6. Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J. & Goldberg, R. B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347, 737–741 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Konar, R. N. & Linskens, H. F. Physiology and biochemistry of the stigmatic fluid of Petunia hybrida. Planta 71, 378–387 (1966).

    Google Scholar 

  8. Labarca, C., Kroh, M. & Loewus, F. The composition of stigmatic exudate from Lilium longiflorum. Labelling studies with myo-inositol, d-glucose, and l-proline. Plant Physiol. 46, 150–156 (1970).

    Article  CAS  Google Scholar 

  9. Cresti, M., Keijzer, C. J., Tiezzi, A., Ciampolini, F. & Focardi, S. Stigma of Nicotiana: ultrastructural and biochemical studies. Am. J. Bot. 73, 1713–1722 (1986).

    Article  CAS  Google Scholar 

  10. Dumas, C. Lipochemistry of the progamic stage of a self-incompatible species: neutral lipids and fatty acids of the secretory stigma during its glandular activity, and the solid style, the ovary and the anther in Forsythia intermedia Zab. (heterostylic species). Planta 137, 177–184 (1977).

    Article  CAS  Google Scholar 

  11. Elleman, C. J., Franklin-Tong, V. & Dickinson, H. G. Pollination in species with dry stigma: the nature of the early stigmatic response and the pathway taken by the pollen tubes. New Phytol. 121, 413–424 (1992).

    Article  Google Scholar 

  12. Kandasamy, M. K., Nasrallah, J. B. & Nasrallah, M. E. Pollen pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development 120, 3405–3418 (1994).

    CAS  Google Scholar 

  13. Evans, D. E., Sang, J. P., Cominos, X., Rothnie, N. E. & Knox, R. B. Astudy of phospholipids and galactolipids in pollen of two lines of Brassica napus L. (rapeseed) with different ratios of linoleic to linolenic acid. Plant Physiol. 92, 418–424 (1990).

    Article  Google Scholar 

  14. Piffanelli, P., Ross, J. H. E. & Murphy, D. J. Intra and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J. 11, 549–562 (1997).

    Article  CAS  Google Scholar 

  15. Dickinson, H. G. Dry stigmas, water and self-incompatability in Brassica. Sex. Plant Reprod. 8, 1–10 (1995).

    Article  Google Scholar 

  16. Elleman, C. J. & Dickinson, H. G. Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea. New Phytol. 133, 197–205 (1996).

    Article  CAS  Google Scholar 

  17. Wolters-Arts, M., Derksen, J., Kooijman, J. W. & Mariani, C. Stigma development in Nicotiana tabacum. Cell death in transgenic plants as a marker to follow cell fate at high resolution. Sex. Plant Rep. 9, 243–254 (1996).

    Article  Google Scholar 

  18. Hülskamp, M., Kopczak, S. D., Horejsr, T. F., Kihl, B. K. & Pruitt, R. E. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 815, 703–714 (1995).

    Article  Google Scholar 

  19. Cheung, A. Y., Zhan, X., Wang, H. & Wu, H. Organ-specific and AGAMOUS-related expression and glycosylation of a pollen tube growth-promoting protein. Proc. Natl Acad. Sci. USA 93, 3853–3858 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Lolle, S. J. & Cheung, A. Y. Promiscuous germination and growth of wild type pollen from Arabidopsis and related species on the shoot of the Arabidopsis mutant, fiddlehead. Dev. Biol. 155, 250–258 (1993).

    Article  CAS  Google Scholar 

  21. Lolle, S. J. et al. Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Dev. Biol. 189, 311–321 (1997).

    Article  CAS  Google Scholar 

  22. Boden, N. in Micelles, Membranes, Microemulsions, and Monolayers (eds Gelbart, W. M., Ben-Shaul, A. & Roux, D.) 153–211 (Springer, New York, (1994).

    Book  Google Scholar 

  23. Ikeda, S., Nasrallah, J. B., Dixit, R., Preiss S. & Nasrallah, M. E. An aquaporin like gene required for the Brassica self-incompatability response. Science 276, 1564–1566 (1997).

    Article  CAS  Google Scholar 

  24. Pruitt, R. E. Molecular mechanics of smart stigmas. Trends Plant Sci. 2, 328–4329 (1997).

    Article  Google Scholar 

  25. Baier, H. & Bonhoeffer, F. Axon guidance by gradients of a target-derived component. Science 255, 472–475 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Maret, G. & Dransfeld, K. Biomolecules and polymers in high steady magnetic fields. Top. Appl. Phys. 57, 143–204 (1985).

    Article  CAS  Google Scholar 

  27. Malho, R., Feijo, J. A. & Pais, M. S. S. Effect of electrical fields and external ionic currents on pollen tube orientation. Sex. Plant Reprod. 5, 57–63 (1992).

    Article  Google Scholar 

  28. Reger, B. J., Chaubal, R. & Pressey, R. Chemotropic responses by pearl millet pollen tubes. Sex. Plant Reprod. 5, 47–56 (1992).

    Article  Google Scholar 

  29. Robbertse, P. J., Lock, J. J., Stoffberg, E. & Coetzer, L. A. Effect of boron on directionality of pollen tube growth in Petunia and Agapanthus. South African J. Bot. 56, 487–492 (1990).

    Article  Google Scholar 

  30. Hyde, G. J. & Heath, I. B. Ca-2+-dependent polarization of axis establishment in the tip-growing organism, Saprolegnia ferax, by gradients of the ionophore A23187. Eur. J. Cell Biol. 67, 356–362 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Pereira for the gift of the cer and popmutants, J. Derksen for reading the manuscript and M.B. van Veen for artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Wolters-Arts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolters-Arts, M., Lush, W. & Mariani, C. Lipids are required for directional pollen-tube growth. Nature 392, 818–821 (1998). https://doi.org/10.1038/33929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33929

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing